Reducing Test Runtime by Transforming Test Fixtures

Chengpeng Li

Abdelrahman Baz

August Shi

Electrical and Computer Engineering Electrical and Computer Engineering Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX, USA
chengpengli@utexas.edu

ABSTRACT

Software testing is a fundamental part of software development, but
the cost of running tests can be high. Existing approaches to speed
up testing such as test-suite reduction or regression test selection
aim to run only a subset of tests from the full test suite, but these
approaches run the risk of missing to run some key tests that are
needed to detect faults in the code.

We propose a new technique to transform test code to speed
up test runtime while still running all the tests. The insight is
that testing frameworks such as JUnit for Java projects allow for
developers to define test fixtures, i.e., methods that run before
or after every test to setup or teardown test state, but these test
fixtures need not be called all the time before/after each test. It may
be sufficient to do the setup and teardown once at the beginning and
end, respectively, of all tests. Our technique, TestBoost, transforms
the test fixtures within a test class to instead run once before/after
all tests in the test class, thereby running the test fixtures less
frequently while still running all tests and ensuring that tests all still
pass, as they did before. Our evaluation on 697 test classes from 34
projects shows that on average we can reduce the runtime per test
class by 28.39% for the cases with positive significant improvement.
Using these transformed test classes can result in an average 18.24%
reduction per test suite runtime. We find that the coverage of the
transformed test classes changes by <1%, and when we submitted
15 pull requests, 9 have already been merged.

CCS CONCEPTS
« Software and its engineering — Software testing and debug-

ging.

KEYWORDS

Regression testing, test fixtures, testing speedup

ACM Reference Format:

Chengpeng Li, Abdelrahman Baz, and August Shi. 2024. Reducing Test Run-
time by Transforming Test Fixtures. In 39th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE °24), October 27-November
1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3691620.3695541

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASE °24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1248-7/24/10

https://doi.org/10.1145/3691620.3695541

The University of Texas at Austin
Austin, TX, USA
ambaz@utexas.edu

The University of Texas at Austin
Austin, TX, USA
august@utexas.edu

1 INTRODUCTION

Regression testing is the practice of rerunning an existing regres-
sion test suite after every change to check whether those changes
break existing functionality [55]. While widely practiced, regres-
sion testing is costly in terms of test runtime, as test suites contain
many tests, and those tests have to be run after every change, which
happens frequently [1, 12, 16, 38, 39]. For example, Google reported
that their regression testing system on average handles 800K builds
and 150 millions test runs per day [39].

Prior work proposed techniques to speed up regression testing,
such as test-suite reduction or regression test selection [55]. Both
these approaches aim to reduce the cost of testing by running
only a subset of the full test suite. However, by running only a
subset of tests, these approaches run the risk of missing to detect
faults if they do not run the key test(s) that could detect those
faults. For example, test-suite reduction creates a reduced test suite
by removing tests considered redundant w.r.t. metrics like code
coverage [9, 10, 18, 24, 37, 44, 48, 58], but subsequent work found
these reduced test suites miss to detect real faults in future versions
of the code [49]. Regression test selection selects to run tests affected
by the code changes, meaning it should ideally not miss to select
tests that can detect newly-introduced faults [16, 29, 34, 57], but
these techniques may still have limitations and miss to select the
key fault-detecting tests [60].

Ideally, we would run all tests without skipping any, but run
them faster. Our insight is that tests often contain test fixtures,
which are setup and teardown methods that the testing framework
runs before/after each test as a means to set up the state for the
test to run or to clean up changes to state shared between tests. For
example, in the JUnit 4 testing framework, these test fixtures are
the methods annotated with @Before, indicating they run before
each test, or annotated with @After, indicating they run after each
test. However, tests may not always need these test fixtures to run
so frequently. Some tests may not actually rely on state modified
in the test fixtures, and some of that setup/teardown logic may
be fine to run just once at the beginning or at the end of all tests
run. In other words, we can save time by transforming these test
fixtures to run less often, saving overall test runtime. The reduction
in runtime can be high if the test fixtures are performing expensive
operations, e.g., setting up a database, and there are many tests to
run (meaning these expensive test fixtures run often).

We propose TestBoost, a technique for reducing test runtime by
transforming test fixtures. Focusing on Java and the JUnit testing
framework, we target test fixtures that run before/after individual
tests defined in a test class to instead run once at the beginning
and/or at the end of the test class, before/after all tests in the test
class run. We still want to run the test fixtures at least once w.r.t. all
tests within a test class, ensuring proper isolation in shared state

https://doi.org/10.1145/3691620.3695541
https://doi.org/10.1145/3691620.3695541
https://doi.org/10.1145/3691620.3695541

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

between test classes. Our transformation for a test class involves
configuring the test fixture methods to run once per test class,
changing the scope of fields and methods to accommodate the test
fixture changes, as well transforming the other test classes related
to the target test class based on class hierarchy.

We make further transformations on test classes to ensure their
tests do not fail due to becoming order-dependent flaky tests (OD
tests). An OD test is a test whose outcome changes due to the order
in which the tests are run [25, 35, 59]. The reason why these tests
fail in different orders is because they are dependent on other tests
with which they share state. Test fixtures are commonly used to set
up or clean that shared state between tests, so transforming them to
not run between tests can cause previously non-OD tests to become
OD tests. To handle these cases, TestBoost also reruns tests in the
transformed test classes in different orders to see whether any of
them pass and fail in different orders. If TestBoost finds OD tests, it
makes additional transformations to the test class by injecting into
those tests additional calls to the test fixtures. Essentially, we aim
to emulate the same behavior as when test fixtures run in-between
each test, but targeting only the tests that need it.

We evaluate TestBoost by transforming 697 test classes, contain-
ing a total of 38430 test methods, spread across 34 open-source Java
projects from GitHub. Our evaluation shows that TestBoost can
successfully transform 500 test classes while ensuring tests still
pass after transformation. When we measure the runtime reduction
using the 500 transformed test classes, we find that 169 of these
test classes provide a statistically significant positive reduction in
runtime, with an average reduction of 28.39% per test class. By
replacing the tests in the test suite with these 500 transformed
test classes, the test suite runtime on average reduces by 18.24%.
Furthermore, we check the difference in code coverage after trans-
formation, finding the coverage on averages changes <1% per test
class. We additionally submit 15 pull requests to developers with
our changes, of which 9 have been merged. An artifact containing
TestBoost code and the results of this paper is available online [4].

This paper makes the following main contributions:

o We identify transforming test fixtures as a means to reduce
test runtime while still running all tests.

e We present TestBoost to transform test fixtures by having
them run only once before/after all tests in a test class.

o We evaluate TestBoost on a dataset of 697 test classes from
34 open-source projects. TestBoost successfully transforms
500 test classes. When the transformation provides a positive
significant reduction in runtime, that reduction in runtime
is on average 28.39% per test class, leading to an average
reduction of 18.24% in the test suite.

o We find the transformed test classes to have on average <1%
change in coverage from before transformation. We also
submitted 15 pull requests, with 9 merged.

2 EXAMPLE

Figure 1 shows an example of a JUnit test class from project
elasticjob/elastic-job-1lite,including the changes before and
after transforming the test fixtures in the test class. This test class
contains three tests along with three test fixtures, which are the
methods annotated with @eforeClass (Line 8), @efore (Line 13),

Chengpeng Li, Abdelrahman Baz, and August Shi

public final class OneOffJobBootstrapTest {
2 private static final ZookeeperConfiguration ZKC =
3 new ZookeeperConfiguration(...);
4 private static final int SHARDING_TOTAL_COUNT = 3;
5+ private static ZookeeperRegistryCenter zkRegCenter;
6- private ZookeeperRegistryCenter zkRegCenter;

8 @BeforeClass public static void init() {

9 EmbedTestingServer.start();

10 + zkRegCenter = new ZookeeperRegistryCenter (ZKC);
11+ zkRegCenter.init ();

12 3}

13- @Before public void setUp() {

14 - zkRegCenter = new ZookeeperRegistryCenter (ZKC);
15 = zkRegCenter.init ();

16- 3}

18+ @AfterClass public static void teardown() {
19- @After public void teardown() {

20 zkRegCenter.close();

3

// Tests

Figure 1: Simplified example test class from elasticjob/-
elastic-job-lite with transformations.

and @After (Line 19). These test fixtures set up and clean up any

state that tests need to run. In this example, the static method an-
notated with @BeforeClass, init(), runs once before all tests in

the test class. The method annotated with @Before, setUp(), runs

before every test in the test class, and the method annotated with

@After, teardown(), runs after every test in the test class. More

specifically, init() runs once to start the EmbedTestingServer

for all the tests, setUp() creates and initializes a new ZooKeeper-
RegistryCenter instance before each test, while teardown () closes
this instance after each test finishes.

Our intuition is that the test fixtures that run before and after
each test, namely setUp() and teardown(), may not need to run
so often. The tests may still pass even if they do not use a fresh
new ZooKeeperRegistryCenter instance and close that instance
every time the test starts and ends, respectively. These test fixtures
may only need to run once before and once after all tests in the test
class, running less often and thereby saving overall test runtime.

To transform the test fixtures to run less frequently, we trans-
form the @Before method into a @eforeClass method so it runs
once at the beginning of the test class before all tests, and we
transform the @After method into a @AfterClass method so it
runs once at the end of the test class after all tests. In this exam-
ple, because a @BeforeClass method already exists, we instead
merge the code from the original @efore method with the exist-
ing @BeforeClass method to ensure that code runs after what was
the original @BeforeClass method code.

In addition, test fixtures that are annotated with @BeforeClass
and @AfterClass need to be static methods, so we change the
signature of teardown() to be static. Furthermore, instance fields
like zkRegCenter need to be converted to static as well (Line 5).

When we transform the test fixtures and update the fields to
become static, the tests in the test class still pass when run. Further,
the transformed test class runs faster than the original test class,
obtaining a runtime improvement of 48.39%.

Reducing Test Runtime by Transforming Test Fixtures

1 # testclass: the test class to transform

2 # Returns the modified test classes

3 def TestBoost(testclass):

4 # Transform test fixtures from test classes

5 mod_testclases, compile_status = Transformer(testclass)
6 # Return original test class if cannot transform

7 if not compile_status == SUCCESS:

8 return [testclass]

10 # Check whether transformed test class has failing
tests

11 failedtests = ODChecker(mod_testclasses)

12 if len(failedtests) ==

13 return mod_testclasses

Tests pass in all orders

15 # Inject setup/teardown calls into failing tests

16 mod_testclasses, run_status = Injector(mod_testclasses,
failedtests)

17 if run_status == SUCCESS:

18 return mod_testclasses

19 else:

20 return [testclass]

Figure 2: High-level pseudocode.

3 TESTBOOST

TestBoost aims to automatically transform the test fixtures within
a test class to ensure they run less frequently, reducing test runtime.
The use scenario for TestBoost is that a developer can use it to trans-
form the test classes in their test suite to run faster in the future.
TestBoost takes as input a test class to transform and outputs all
test classes that TestBoost transforms. The reason TestBoost would
transform more than just the input test class is when that test class
is a subclass or superclass of other test classes, so those other test
classes may need to be transformed as well.

TestBoost is divided into three main components: Transformer,
OD-Checker, and Injector. Figure 2 shows pseudocode illustrating
how TestBoost calls the different components to transform a test
class. TestBoost first uses Transformer to transform test fixtures of
the test class to be static, including the related test classes due to
class hierarchy. If the transformed test classes still compile, Test-
Boost then uses OD-Checker to see whether all tests pass when
run in any order within each test class, successfully returning the
transformed test classes if so. Otherwise, TestBoost relies on Injec-
tor to transform a test class further by modifying failing tests to
explicitly call the test fixtures to reset state. While test fixtures get
called more often in this scenario, ideally not all tests need to call
test fixtures for them to all pass. If Injector can make the tests pass
in any order, we consider TestBoost to be successful.

3.1 Transformer

Given a test class, the Transformer transforms the test fixtures in
the test class such that they execute only once instead of every time
before/after each test in the test class. We rely on JavaParser [2],
an existing tool for parsing and transforming Java files, to perform
this transformation on the test file that contains the test class. More
specifically, in the case of JUnit 4 tests, we change the @Before
annotated methods to be annotated with @BeforeClass, so the
methods run just once before all tests in the test class, and we change
the @After annotated methods to be annotated with @AfterClass,

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

1 # testclass: the test class to transform

2 # Returns the transformed test classes and status
3 def Transformer (testclass):

A mod_testclasses = set()

6 # Parse hierarchy of current test class

7 tc_tree = parse_hierarchy_tree(testclass)

8 super_testclasses = get_ancestors(testclass, tc_tree)
9 sub_testclasses = get_descendants(testclass, tc_tree)

11 # Plan to process all classes related to testclass

12 classes_to_process = super_testclasses + [testclass] +
sub_testclasses

13 topological_sort(classes_to_process, tc_tree)

15 while len(classes_to_process) > 0:
16 curr = classes_to_process.pop()

18 # Find the methods/fields to update annotations,
19 # e.g., @Before becomes @BeforeClass

20 methods, fields = update_anno(curr)

21 if len(methods) > @ or len(fields) > 0:

22 mod_testclasses.add(curr)

24 # Convert methods and fields to static

25 while len(methods) > @ or len(fields) > 0:

26 new_methods = set()

27 new_fields = set()

28 for m in methods:

29 make_static(m)

30 mod_testclasses.add(get_declaringclass(m))

31 new_methods |= get_referenced_methods(m)
32 new_methods |= get_override_methods(m, tc_tree)
33 new_fields |= get_referenced_fields(m)

34 for f in fields:

35 make_static(f)

36 mod_testclasses.add(get_declaringclass(f))
37 new_methods |= get_referenced_methods(f)
38 new_fields |= get_referenced_fields(f)

39 fields = new_fields

10 methods = new_methods

42 new_children = get_descendants(curr, tc_tree)
43 classes_to_process |= new_children

45 # Re-sort classes in case new ones got added
46 topological_sort(classes_to_process, tc_tree)

48 # Re-compile all the modified test classes
49 status = compile(mod_testclasses)
50 return mod_testclasses, status

Figure 3: Transformer pseudocode.

so the methods run just once after all tests in the test class. For
JUnit 5, we perform a similar transformation, except we change
@BeforeEach to @BeforeAll and @AfterEach to @AfterAll.
Figure 3 shows pseudocode representing the Transformer work-
flow. First, Transformer creates a class hierarchy tree involving the
test class to be transformed, which can include all the test classes it
inherits from as well as those that inherit from it (Lines 7-9). Trans-
former iterates through all these classes to check which ones need
to be transformed. It goes through these classes in a topological
ordering, to ensure the classes on the top of the class hierarchy get
processed first (Line 13). For each test class to be processed, Trans-
former checks whether that test class contains any test fixtures

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

that should be transformed; the update_anno function automati-
cally rewrites the annotations appropriately based on the testing
framework, e.g., methods annotated with @Before in JUnit 4 get
rewritten to @eforeClass (Line 20). We also change the annota-
tions of fields annotated with @Rule, which are fields that JUnit sets
up before each test and resets after each test finishes. We change
such fields to be static and annotated with @ClassRule, so they are
set up and reset before/after all tests in a test class.

If the test class has test fixtures to be transformed, it iterates
through all the test fixtures and fields to determine whether they
reference some other methods and fields, e.g., a test fixture calls
other helper methods. Since the test fixtures will become static, they
can no longer reference non-static instance methods or fields, so
referenced methods and fields need to also become static. We use the
functions get_referenced_methods and get_referenced_fields
to get the referenced methods and fields, respectively. Transformer
iteratively uses these functions to find all referenced methods and
fields referenced, making all of them static (Lines 25-40). Note that
these methods/fields may be declared in some superclass. We di-
rectly change these methods/fields in the class in which they are
declared. We add these declaring classes into the set of modified
test classes that Transformer eventually returns. We also remove
the final keyword from fields, so they can be modified in the test
fixture when made static. Normally, as instance fields, their values
are reset between tests due to JUnit creating new test class instances
for each test, and we want to allow that to still be possible in the
case of needing to inject calls to test fixtures (Section 3.3). If the field
is a mock object for Mockito, meaning it is annotated with @Mock,
Transformer needs to move the assignment to the @BeforeClass
or @BeforeAll method to ensure it is assigned properly as a static
field. Furthermore, we find all methods in subclasses that override
any transformed methods and schedule them to be transformed
as well. Finally, if the test class at this iteration is transformed in
any way, we get all other test classes that inherit from it so we can
transform those as well (Lines 42-43). We include these subclasses
because their functionality may depend on this transformed super-
class, so we need to transform them, e.g., making their methods
static. We re-sort the classes in topological order to always ensure
processing the classes high on the hierarchy tree first.

If the test class contains any existing @eforeClass/@BeforeAll
or @AfterClass/@AfterAll methods, we merge the transformed
test fixtures into those existing methods. For transformed @Before/-
@BeforeEach methods, we take all their statements and append
them to the end of the existing @eforeClass/@eforeAll method
(we assume at most only one such method in the test class). Merg-
ing the statements this way ensures that all statements from the
@Before/@BeforeEach method execute after the statements from
the original @BeforeClass/@eforeAll method, matching seman-
tics of the original test class. We perform a similar transforma-
tion for @After/@AfterEach methods, except we prepend the state-
ments into the existing @AfterClass/@AfterAll method to match
the original teardown semantics.

We also handle some additional minor transformations. If we en-
counter any usage of this as a caller object, e.g., this.call(),
we change the method call to instead use the test class name,
e.g., TestClass.call(). If we see this being used in the form
of this.getClass(), we replace that specifically with the name

Chengpeng Li, Abdelrahman Baz, and August Shi

test classes: transformed test classes to run

2 def ODChecker(testclasses):

4

od_tests = set()
for t in testclasses:
test_orders = systematically_get_orders(t)

for order in test_orders:
failed_tests = extract_failed_tests(order)
od_tests |= failed_tests

return od_tests

Figure 4: OD-Checker pseudocode.

of the test class with suffix . class to obtain a Class instance re-
ferring to the test class. If this is used not as a caller object, e.g.,
MockitoAnnotations.initMocks(this), we change the this to
be a new instance of the test class (test classes must have a no-
argument constructor, which we can use to construct instances).
Finally, if the call uses super to reference a superclass, we replace
it with the name of the superclass to access its static method.
Once we have all the modified test classes, we compile all of
them to ensure our changes are valid. Transformer returns the set
of modified test classes along with that compilation status. If compi-
lation fails, the high-level algorithm would stop and not transform
the test class, returning the original test class (Line 7 in Figure 2).

3.2 OD-Checker

Due to the nature of the transformations, tests within a trans-
formed test class may pass/fail when run in different orders, i.e.,
they now have order-dependent flaky test (OD tests) due to shared
state dependencies between tests [25, 35, 50, 59]. Note that the tests
may only be dependent on other tests in the same test class, and not
across test classes, because our transformations still make sure test
fixtures get executed before/after each test class, ensuring isolation
between test classes in terms of shared state.

Figure 4 shows pseudocode illustrating OD-Checker, which de-
tects OD tests among the transformed test classes. OD-Checker
relies on prior work by Li et al. to systematically search for orders
that can detect OD tests [31] (Line 5). This approach generates the
minimal set of orders where for every pair of tests, there is an order
where one test in that pair runs before the other and vice versa.
Note that we generate these orders per test class and do not worry
about inter-class test pairs [31].

OD-Checker reports all tests that have failed at least once in any
of the orders it runs the tests in. In additional to normal test failures,
we also insert a long timeout on each test, where a test that reaches
the timeout value also counts as a failure. We insert timeouts on
each test because we noticed cases where the transformations can
lead to tests to run indefinitely, due to some state not being reset
between tests. We want to report such cases as failed tests as well,
for the subsequent steps of TestBoost.

3.3 Injector

If OD-Checker finds tests that fail, we use Injector to transform the
test class further as to prevent their failures. Since the tests fail due
to test fixtures no longer running and resetting state in-between
each test, Injector injects explicit calls to test fixtures where needed.

1

3

5

Reducing Test Runtime by Transforming Test Fixtures

testclasses: the transformed test classes to transform
further
global_failedtests: the tests that failed in some order
def Injector(testclasses, global_failedtests):
for tc in testclasses:
tc_failedtests = set()
for t in global_failedtests:
if t in tests(tc):
tc_failedtests.add(t)

failedtests = list(tc_failedtests)
before_fixtures, after_fixtures = find_fixtures(tc)
polluter_victim_pairs = find_polluter_victims(tc,
failedtests)
sorted_polluters_victims = sort_polluters(
polluter_victim_pairs)
sorted_victims_polluters = sort_victims(
polluter_victim_pairs)
while len(failedtests) > 0:
num_top_victims = @, num_top_polluters = 0
if len(sorted_polluters_victims) > 0:
num_top_victims = len(sorted_polluters_victims
[ell11)
if len(sorted_victims_polluters) > 0:
num_top_polluters = len(sorted_victims_polluters
[e1l11)
if num_top_victims > @ || num_top_polluters > 0:
if num_top_victims >= num_top_polluters:
victims = sorted_polluters_victims[@][1]
polluter = sorted_polluters_victims.pop()[@]
three modes, only inject to the polluter;
only inject to the victims;
inject both to the polluter and victims
add_fixture_calls(polluter, after_fixtures,
victims, before_fixtures)

pairfailedtests = run_every_pair(polluter,
victims)
if len(pairfailedtests) == 0:
continue
else:
return FAIL
else:

polluters = sorted_victims_polluters[Q][1]

victim = sorted_victims_polluters.pop()[0@]

three modes, only inject to the victim;

only inject to the polluters;

inject both to the polluters and victim

add_fixture_calls(polluters, after_fixtures,
victim, before_fixtures)

pairfailedtests = run_every_pair(polluters,
victim)
if len(pairfailedtests) == 0:
continue
else:

return FAIL
else:
failedtests = ODChecker (tc)
if len(failedtests) > 0:
if len(failedtests & tc_failedtests) > 0:
return FAIL
tc_failedtests |= failedtests
polluter_victim_pairs = find_polluter_victims(
tc, failedtests)
sorted_polluters_victims = sort_polluters(
polluter_victim_pairs)
sorted_victims_polluters = sort_victims(
polluter_victim_pairs)

return SUCCESS

Figure 5: Injector pseudocode.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Figure 5 shows pseudocode for the Injector. Injector first finds
what are the corresponding test fixtures for the test class (Line 11).
Note that these test fixtures may be declared in a superclass of the
failed test. As a means to identify more precisely where to inject
calls to test fixtures, Injector first identifies the relevant tests for
making the OD test fail. Using terminology by Shi et al. [50], we
treat the OD test as a victim that fails when run after another test, a
polluter, “pollutes” their shared state!. We find all polluters for each
victim (Line 12) by running each test before the victim one-by-one
with the victim to see whether victim fails [28]. Injector creates a
set of all pairs of polluter/victim, and a single polluter may pollute
multiple victims or a single victim may have different polluters.

Intuitively, for a victim, if there is a test fixture call at its begin-
ning or there is a test fixture call at the end of each of its polluters,
then the victim should pass in any order. The goal is to minimize
the number of calls to test fixtures, e.g., if a single test is the polluter
for multiple different victims, it would be more efficient to inject a
test fixture call at the end of that polluter. Injector injects calls to
the teardown test fixture(s) at the end of a polluter, while it injects
calls to the setup test fixture(s) at the beginning of a victim. These
transformations emulate normal execution involving test fixtures,
as to reset shared state between the pair of tests. As long as not all
tests need such transformations, we can still have faster runtime
due to not having to invoke the test fixtures as often as before.

To figure out the best places to inject test fixture calls, Injec-
tor sorts the set of polluter/victim pairs in two ways: one that
sorts polluters based on number of victims they form pairs with,
and the other that sorts victims based on number of polluters
they form pairs with (Lines 13-14). Then, Injector iteratively tries
to “fix” each victim by going through the pairs and determining
where to inject calls to test fixtures. Given the two sorted lists of
pairs, Injector determines whether the top polluter has more vic-
tims or the top victim has more polluters, and it will inject test
fixture calls to whichever one has more. Injector uses the func-
tion add_fixture_calls (Line 28) to modify these tests, which
it does in one of three ways. If the polluter is chosen (Line 22),
add_fixture_calls tries to inject the @After/@AfterEach test
fixtures to the end of that polluter, and then it runs the transformed
polluter alongside each victim. If this approach cannot make the
victims pass, add_fixture_calls will revert the last change and in-
ject @Before/@BeforeEach test fixture calls to the beginning of all
the victims. If the victims still fail, add_fixture_calls will trans-
form both polluter and all victims together, essentially applying
the first two approaches to all relevant tests. add_fixture_calls
performs a similar transformation if the victim is chosen (Line 40),
but it attempts to inject test fixture calls to the victim first before
moving on to the polluters. If the victim still does not pass, Injector
stops and is unsuccessful at transforming the test class.

After transforming the tests, we run the tests through OD-Checker
again to check whether they all pass in any order (Line 47). If there
are failing tests seen previously, we are unsuccessful at transform-
ing the test class (Line 49). If there are only newly failing tests, we
rerun the main logic of Injector again on these newly failing tests.
Injector is successful if all tests pass when run in any order.

'We only handle victim tests given that they are the most prominent type of OD tests.

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

As developers maintain the test class for their future changes, if
they add more tests or change existing ones, they can use existing
techniques for OD test detection [25, 31, 32], and if there are OD
tests, they can apply TestBoost to address this issue.

4 METHODOLOGY
We answer the following research questions:

e RQ1:How effective is TestBoost at transforming test fixtures?

e RQ2: How much reduction in runtime per test class does
TestBoost achieve after transforming test fixtures?

e RQ3: How much reduction in overall test suite runtime does
TestBoost achieve after transforming test fixtures?

e RQ4: How much fault-detection capability is reduced after
transforming test fixtures?

e RQ5: How do developers react to transforming test fixtures?

We answer RQ1 to evaluate how well TestBoost can transform
test classes and test fixtures. We answer RQ2 and RQ3 to evaluate
how much faster are the test classes and overall test suite, respec-
tively, after transformation. We answer RQ4 to check potential test
quality loss after transformation. Finally, we answer RQ5 to see
whether developers are receptive to such transformations.

4.1 Dataset

Our dataset consists of open-source projects used in prior research
on software testing [30, 31, 40, 51]. These prior works generally
proposed techniques to speed up testing, so their subjects would
be a good fit for our goals. We implement TestBoost for Maven, so
we start with the 91 Maven projects from those prior works.

We further filter the test classes to contain those that take at
least one second to run, contain test fixtures, and contain more than
one test (there is no point in transforming test fixtures to run once
per test class if there is just one test). We obtain 921 test classes to
transform. While TestBoost can transform superclasses of a target
test class, if those superclasses are outside of the current test suite,
e.g., from a third-party library, TestBoost cannot transform the test
files corresponding to those test classes. We therefore remove 169
test classes that inherit from classes outside of its test suite. After
running the tests in these test classes in different orders, we exclude
55 test classes that already contain some OD tests beforehand,
since TestBoost assumes tests initially can pass in any order as to
determine whether it can successfully transform a test class.

Table 1 shows the characteristics of the projects and tests we
use in our evaluation. Column “ID” shows a project ID that we
use to refer to the project in future tables. Column “Project” shows
the project GitHub user/repository. Column “# Mod.” shows the
number of modules we use from that project’. Column “# TC”
shows the number of test classes and column “# TM” shows the
number of tests within those test classes. Column “Avg. TC runtime”
shows the average runtime in seconds of each test class per project.
Finally, Column “Avg. Module runtime” shows the average runtime
in seconds of the entire test suite in each module per project. The
final row shows the total number of modules, test classes, and tests
we use in our evaluation, and it shows the average runtime of all
test classes and module test suites we use in our evaluation. Overall,

2A Maven project can have multiple modules; each module has its own test suite

Chengpeng Li, Abdelrahman Baz, and August Shi

we evaluate on 697 test classes with 38430 tests, spread across 135
modules from 34 projects. The average test class and test suite
runtimes are 11.11 seconds, and 112.06 seconds, respectively.

4.2 Metrics

To answer RQ1, we measure how many test classes TestBoost can
transform successfully. We also evaluate the rate of test fixture
injection (Section 3.3), calculated as:

Vic = Setup + Pol = Teardown

Tests = (Setup + Teardown)

where Vic and Pol are the the number of victims and number of
polluters, respectively, where we inject calls to test fixtures. Setup
and Teardown are the number of setup and teardown test fixtures,
respectively, in the test class, and Tests is the number of tests. The
denominator is the total number of test fixture calls that would
happen normally (all test fixture methods get called for every test),
and the numerator represents the more targeted number of test
fixture calls made. A smaller injection rate is desirable.

To answer RQ2, we measure the test class runtime before and
after transformation and compute runtime reduction as:

Runtime(Ty,) — Runtime(T,)
Runtime(Ty)

where Runtime() computes the test class runtime, averaged across
10 runs, for the test class Tj, before transformation and T, after
transformation. A higher reduction is better, indicating a greater
decrease in test runtime. Note that the percentage may be negative,
indicating increased test runtime. We perform a Wilcoxon signed-
rank test to check for statistically significant difference in runtime.

To answer RQ3, for each module, we replace all test classes in
the test suite with the transformed test classes with positive statisti-
cally significant runtime reduction. We ignore any test classes with
insignificant or negative reduction in runtime, because a developer
would not use such transformed test classes. We run the entire test
suite of the module before and after including the transformed test
classes and measure the reduction in test suite runtime. We perform
a Wilcoxon signed-rank test to measure significant differences.

To answer RQ4, we use JaCoCo [6] to measure line coverage of
test classes as a proxy for fault-detection capability. We collect the
set of lines covered before/after transformation and check which
lines that were covered before are no longer covered after, measur-
ing percentage loss in coverage as:

|Cov(Tp) \ Coo(Ta)|
|Coo(Tp)]

where Cov() computes the set of lines covered by the test class.

We also use PIT [7] to conduct mutation testing analysis [22]
to measure fault-detection capability. We run PIT on the test class
before/after transformation to collect the set of killed mutants,
measuring loss in mutants killed as:

|Kill(Ty) N Surv(Ty)|
IKill(Tp)|
where Kill() computes the set of mutants killed by the test class
and Surov() computes the mutants that survived. We only consider

as “killed” the mutants PIT explicitly marks as KILLED, excluding
mutants that timed out or had memory/run error, which can be

Reducing Test Runtime by Transforming Test Fixtures

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: Characteristics of projects in dataset.

ID | Project # # # Avg. Test Class | Avg. Mod.
Mod. | Test Classes | Test Methods Runtime (s) Runtime (s)
P1 Activiti/Activiti 4 4 15 8.64 45.88
P2 | AdoptOpenJDK/jitwatch 1 1 13 9.02 18.42
P3 | Graylog2/graylog2-server 1 3 17 2.21 100.89
P4 | apache/commons-codec 1 1 117 3.54 10.75
P5 | apache/commons-configuration 1 2 87 3.95 28.33
P6 | apache/commons-dbcp 1 8 346 4.89 95.68
P7 | apache/commons-io 1 3 25 2.59 72.76
P8 | apache/commons-lang 1 1 10 5.47 69.15
P9 | apache/commons-math 2 2 93 2.59 13.68
P10 | apache/commons-pool 1 4 183 71.70 377.84
P11 | apache/dubbo 16 29 227 5.88 24.06
P12 | apache/flink 11 32 445 5.90 259.71
P13 | apache/hadoop 29 401 4146 17.97 1014.68
P14 | apache/incubator-skywalking 1 1 2 10.40 10.34
P15 | apache/rocketmq 6 21 196 17.72 70.50
P16 | apache/storm 2 5 21 9.79 77.74
P17 | brettwooldridge/HikariCP 1 47 18.07 220.51
P18 | dropwizard/dropwizard 9 13 124 3.05 15.60
P19 | druid-io/druid 17 100 31453 9.91 430.39
P20 | eclipse/eclipse-collections 1 1 33 1.93 88.96
P21 | elasticjob/elastic-job-lite 2 3 22 1.82 10.55
P22 | graphhopper/graphhopper 1 3 308 4.22 117.99
P23 | igniterealtime/Openfire 1 8 191 2.04 72.44
P24 | iluwatar/java-design-patterns 4 4 15 6.76 9.52
P25 | ktuukkan/marine-api 1 1 16 1.89 2.37
P26 | languagetool-org/languagetool 6 11 114 9.77 69.02
P27 | spring-projects/spring-ws 1 3 10 7.52 19.39
P28 | srt/asterisk-java 1 1 22 4.45 35.03
P29 | undertow-io/undertow 2 7 45 8.35 210.36
P30 | vmware/admiral 1 1 3 2.03 14.69
P31 | wikidata/wikidata-toolkit 1 1 26 1.30 2.08
P32 | wildfly/wildfly 2 5 13 10.39 40.68
P33 | wso2/carbon-apimgt 2 3 11 97.16 145.98
P34 | zalando/riptide 3 8 34 4.71 14.04
| Avg./Total | 135 | 697 | 38430 | 1111 | 112.06

due to various nondeterministic factors, e.g., a machine slowdown.
Conversely, “survived” mutants are those PIT marks as SURVIVED
or NO_COVERAGE, so they definitely are not killed.

To answer RQ5, we send one pull request for each project that
has at least one transformed test class that could statistically sig-
nificantly lower the module’s test suite runtime. We send a pull
request with just one test class per project as to not overwhelm
them with too many changes that they may not want.

4.3 Running Environment

We run all our experiments in a Docker container built from an
Ubuntu 20.04 Docker image, using JDK 17 and Maven 3.8.3. We
limit the container to use 2 CPUs and 8GB of RAM, simulating the
environment commonly used in continuous integration services [3,
5], which is where we expect most developers to run their tests.

5 EVALUATION

5.1 RQ1: Effectiveness of Transformations

Table 2 shows the results of applying TestBoost on our dataset of
test classes. Column “# Success” shows the number of test classes on
which TestBoost could successfully transform the test fixtures with
the tests still passing. In total, TestBoost successfully transforms
500 out of the 697 test classes, i.e., 71.74% of them. TestBoost on
average uses 2646.76 seconds to transform a test class (running all
three components of TestBoost). The majority of this time is used
in OD-Checker as well as Injector searching for polluters, which
makes sense given the large number of reruns needed by these
components. Fortunately, transformation only needs to be done
once, as the transformed test class can be re-used in the future.
We inspect further the reasons for why TestBoost cannot success-
fully transform the 197 test classes. Eight test classes contain flaky

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Table 2: Successfully transformed test classes characteristics.

ID # Success | % Injections
P1 1 50.00
P2 1 0.00
P4 1 5.56
P5 2 32.64
P11 27 10.69
P12 24 13.69
P13 293 25.71
P15 13 18.83
P17 6 20.14
P18 10 18.38
P19 59 28.43
P21 3 47.35
P23 8 22.54
P26 10 0.00
P27 3 0.00
P29 7 14.29
P33 3 66.67
P34 8 8.33
Avg./Total | 500 24.25

tests [35] before transformation, meaning they nondeterministically
pass/fail when run multiple times. The failures after transformation
may not be due to the transformation itself. For three test classes,
we find that the tests became flaky after the transformation. These
tests indeed had logic referring to shared state, so the transforma-
tion likely increased the chance of flaky failure, though the tests do
not consistently pass/fail in specific orders as prior work defined
order-dependent tests [27, 50]. TestBoost can report whether tests
have such flaky behavior, allowing developers to decide to use the
transformed test classes. We inspected further one case, where the
test fixture helps change the status of a node in a cluster to active,
allowing the test to write to it. However, activation may take some
time and writing to an inactive node raises errors. While this test
is flaky and can fail even before transformation, by not calling the
test fixture as often, the chance of failure ends up increasing.

We cannot transform 10 test classes due to specific properties
of the Java class that we currently do not handle, e.g., abstract
test classes with abstract methods or type parameters. Two test
classes skip to run some test methods after the transformation
that were not skipped before. TestBoost fails to transform 73 test
classes successfully due to issues related to constructors (we do not
transform non-default constructors), or the test fixtures specifically
rely on being run per test, e.g., getting the current test method
name, which is not possible for a static test fixture. Two test classes
do not compile due to removing the final keyword (Section 3.1).

Finally, 99 test classes do not pass even though we inject calls to
test fixtures. Some examples include being unable to change a @ule
field into @ClassRule, or in some cases the test where we inject
a test fixture call runs first in some order, making the test fixture
executed twice in a row and breaking intended functionality.

Table 2 also shows under Column “% Injections” the average
injection rate per test class (Section 4.2), with average 24.25% per
test class. For the most part, TestBoost does not need to inject calls

Chengpeng Li, Abdelrahman Baz, and August Shi

Table 3: Reduction in runtime per test class.

D # Signf. .Red. #.Pos. Pos.
signf. % | signf. | Red. %

P1 1 2.44 1 2.44
P2 1 90.53 1 90.53
P4 1 12.73 1 12.73
P5 1 26.99 1 26.99
P11 16 14.10 16 14.10
P12 10 17.73 10 17.73
P13 105 14.71 87 19.06
P15 7 10.60 6 11.85
P17 1 -13.91 0 0.00
P18 6 13.13 5 23.67
P19 23 17.47 22 17.63
P21 2 -16.07 1 48.39
P23 4 -8.00 3 31.30
P26 7 11.96 7 11.96
p27 3 83.23 3 83.23
P29 3 17.44 2 60.48
P33 1 7.29 1 7.29
P34 2 3.26 2 3.26
Percent. Avg. 15.24 20.01
Runtime Avg. 15.32 19.16
Avg./Total 194 16.98 169 28.39

to test fixtures to the test classes, indicating that tests can still pass
even if the test fixtures are not run before/after all tests in the test
class. In fact, 237 test classes can run all tests successfully without
needing any injected calls. However, several test classes with many
tests require injected calls, with a maximum number of 51 methods
needing injected calls in a single test class from project P5.

RQ1 Summary: TestBoost can successfully transform most test
classes from our dataset, transforming 500 out of the 697 total test
classes in our dataset. Further, 237 of the transformed test classes
still pass even without needing to inject any calls to test fixtures
for any test methods, and the average injection rate is 24.25%.

5.2 RQ2: Reduction in Test Class Runtime

Table 3 shows the results of comparing the runtime before and after
transforming test classes. Column “# Signf.” shows the number of
test classes where runtime is statistically significantly different, p <
0.05. Overall, 194 test classes out of 500 successfully transformed
test classes have significant runtime difference.

However, the significant differences are not all positive. We see
several cases where there is no reduction in test runtime but rather
an increase. Column “Red. signf. %” shows the average reduction in
test runtime after the transformation per test class per project. A
negative percentage indicates an increase in test runtime. Overall,
though, we see that on average there is still a positive reduction
in runtime. The average reduction per test class across all projects
is 15.24%. If we weight by runtime (compute reduction in terms of
the sum of runtime across all test classes, giving more weight to
test classes with higher runtime), the average reduction is 15.32%.
The two averages are about the same, suggesting that the reduction

Reducing Test Runtime by Transforming Test Fixtures

Table 4: Reduction in runtime per module test suite.

D 4 Mod. #.Pos. Pos.
signf. | Red. %

P1 1 0 0.00
P2 1 1 81.28
P4 1 1 5.49
P5 1 1 4.88
P11 10 7 6.20
P12 5 1 6.71
P13 14 4 4.26
P15 3 2 6.58
P18 4 4 11.48
P19 6 3 8.65
P21 1 1 3.34
P23 1 1 4.66
P26 4 1 29.74
P27 1 1 85.35
P29 2 1 2.85
P33 1 1 12.14
P34 2 0 0.00
Percent. Avg, 12.73
Runtime Avg. 5.17
Avg./Total 58 30 18.24

in runtime is not that dependent on individual test class runtimes.
Finally, the average reduction per project is 16.98%.

In general, TestBoost provides little runtime reduction in test
classes with few test methods, since test fixtures are not run that of-
ten in the first place, or when the test fixtures do not run very long
compared to the test methods. When measuring R? correlation be-
tween number of test methods per test class and runtime reduction,
we find a positive correlation (0.02), so more test methods means
bigger reduction, but the correlation is small, suggesting the main
contributing factor is likely the runtime of a test fixture relative to
test methods. Further, we inspect some of the more extreme cases,
such as a test class from project P23 with an increased runtime
(-189.43% “reduction”). We observe two threads running per test,
and the test fixtures try to release the locks of these two threads. If
we transform the test class, the test methods wait for the threads
to release the locks, making the runtime go up.

Column “# Pos. signf.” in Table 3 shows the number of test classes
with positive, statistically significant reduction in test runtime.
Overall, 169 test classes’ runtimes are significantly reduced, so
most test classes have a positive reduction in runtime. A developer
should only use these 169 transformed test classes. If we consider
the reduction in test class runtime for just these positive cases
(column “Pos. Red. %”), the average reduction per test class is 20.01%.
When weighted by runtime, the average reduction is 19.16%. The
average reduction per project is 28.39%.

RQ2 Summary: 169 test classes have significant reduced runtime
after transformation, leading to an average runtime reduction of
28.39% per project.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

5.3 RQ3: Reduction in Test Suite Runtime

Table 4 shows the results of the reduction in test suite runtime after
using all transformed test classes that provide positive significantly
reduced runtimes in that test suite. The column “4# Mod.” shows
the number of modules per project where we have a test class
with a positive significantly reduced runtime, column “# Pos. signf.”
shows the number of modules where the reduction is significant
and positive, and column “Pos. Red. %” shows the average reduction
percentage for those positive significant cases. We observe only
one module with significant negative reduction.

Overall, 58 modules have transformed test classes with positive
significant reduction in runtime, with 30 modules having a signifi-
cant reduction in test suite runtime. The average reduction in test
suite runtime for these modules is 12.73%. When weighted by mod-
ule runtime, the average reduction is 5.17%. This runtime weighted
average is much lower, suggesting that the longer-running module
test suites have less reduction. The reason for this effect may be
that these test suites have many tests, so transforming just a few
of the test classes may not change the overall test suite runtime as
much. Finally, the average reduction per project is 18.24%.

We inspect some of the more extreme cases where the reduction
in test suite runtime is very large. For example, for project P2,
the transformed test class originally counts for a large portion
of the overall test suite runtime in the module. Further, the test
class has reduction in runtime of 90.53%, which we find is due to
the @Before test fixture performing some expensive operations to
compile some classes that runs before every test. Changing this
test fixture to @BeforeClass greatly reduces the runtime, which
in turn contributes a lot to the reduction in test suite runtime.
RQ3 Summary: TestBoost’s transformed test classes can provide
a positive significant difference in runtime for the entire test suite
in the module for 30 out of the 58 modules, providing an average
reduction of 18.24% in runtime.

5.4 ROQ4: Fault-Detection Capability

We collect the coverage information for 168 test classes and 56
modules. We lose one test class from P33 where the project explicitly
disables JaCoCo due to integration issues, so we also cannot collect
coverage. Table 5 shows loss in coverage due to transformation.
Column “# Test Classes” shows the number of test classes that have
loss in coverage from before. Column “% Lines (TC)” shows the
percentage coverage decrease per test class. Column “% Lines (TS)”
shows the percentage coverage decrease on the whole test suite
after including all transformed test classes. Overall, 54 test classes
lose coverage of lines covered before transformation, with average
percentage decrease of 0.09% per test class and average percentage
decrease of coverage per test suite across all projects is 0.05% per
test suite. Loss of coverage is overall <1%. We also observe gain in
coverage per test class, with 62 test classes covering additional lines,
average 0.44% per test class and 0.07% per test suite. Interestingly,
undertow-io/undertow has decreased coverage at the test suite
level without any loss in coverage per test class. We find it due to
flakiness in coverage of other test classes we did not transform [21].

In measuring mutants killed, we can only collect such informa-
tion for 101 test classes and 19 modules; PIT could not run properly
for the remaining test classes and modules due to issues with how

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Table 5: Decrease in lines covered.

ID # Test Classes | % Lines (TC) ‘ % Lines (TS)
P1 1 0.29 0.16
P2 0 0.00 0.00
P4 0 0.00 0.00
P5 0 0.00 0.00
P11 1 0.02 0.00
P12 1 0.01 0.02
P13 47 0.09 0.18
P15 1 0.51 0.02
P18 0 0.00 0.00
P19 3 0.16 0.00
P21 0 0.00 0.00
P23 0 0.00 0.00
P26 0 0.00 0.00
P27 0 0.00 0.00
P29 0 0.00 0.03
P34 0 0.00 0.00
Avg./Total | 54 | 0.09 | 0.05

Table 6: Decrease in mutants killed.

ID ‘ # Test Classes ‘ % Muts (TC) ‘ % Muts (TS)
P1 1 2.21 -
P2 0 0.00 -
P4 0 0.00 0.00
P5 0 0.00 0.00
P11 1 2.50 0.00
P12 5 0.86 -
P13 15 1.62 0.00
P15 5 7.73 0.23
P18 0 0.00 0.00
P19 3 0.38 -
P21 0 0.00 0.00
P23 1 9.43 0.04
P26 0 0.00 0.01
p27 0 0.00 0.00
P29 0 0.00 -
P33 0 0.00 -
P34 0 0.00 0.00
Avg./Total | 31 | 1.67 0.02

PIT integrates with those projects, even before transformation.
Table 6 shows the change in mutants killed after transformation.
Column “# Test Classes” shows the number of test classes that do
not kill some mutants originally killed before transformation. Col-
umn “% Muts (TC)” shows the the percentage decrease of mutants
killed per test class. Column “% Muts (TS)” shows the percentage de-
crease of mutants killed per test suite. Overall, 31 of the test classes
miss to kill some mutants killed before. The average percentage
decrease of mutants killed per test class across all projects is 1.67%.
The average percentage decrease of mutants killed per test suite is
0.02%. We notice test classes with additional killed mutants after
transformation, with 22 test classes killing additional mutants, with

Chengpeng Li, Abdelrahman Baz, and August Shi

average percentage increase of 1.00% killed mutants per test class.
We also notice loss in mutants killed at the test suite level when
there is none at the test class level due to flakiness in coverage [47].
RQ4 Summary: 54 test classes lose covered lines after transforma-
tion, with average percentage decrease of coverage per test class of
0.09%. 31 test classes have fail to kill mutants killed before, with av-
erage percentage decrease of mutants killed per test class of 1.67%.
Both losses in coverage and killed mutants is small, and there is
even some gain in other lines covered and mutants killed.

5.5 RQ5: Pull Requests

We have so far sent 15 pull requests to 14 projects. So far, we have 9
pull requests merged by the developers, 4 rejected, while 2 are still
pending. We did not send a pull request to P23, because we noticed
the developers had since refactored the test class by applying a
similar approach to move the time-consuming part of the @Before
method into a @eforeClass method, illustrating the importance
of TestBoost in automating tasks a developer wants to perform.

For those 2 pending pull requests, while they have not made
any official decision on the changes, we have been in discussion
with developers, receiving valuable insights. The developers of P12
believe their tests are unstable, and they worry that these changes
may make them more vulnerable and flaky in the future. The overall
one second reduction in runtime that our transformation would
bring would not be good enough for them to consider the changes.
Maintainers from P13 have not provided feedback yet. Concerning
the 4 rejected pull requests, for one from P19, developers closed our
pull request, because they did not want to set every field involved
in the @Before method to be static, where only certain targeted
fields should be moved to @BeforeClass. Currently, we transform
as much as necessary to make all test fixtures static methods. The
developers made their own changes to test fixtures, fundamentally
using a similar approach but moving only targeted parts of code
into the static test fixtures. Our changes to tests from P5 and P4
require injecting calls to test fixtures in tests, and developers say
it is not worth making the tests more convoluted, especially given
the small reduction in runtime. We did not receive any feedback for
the remaining rejected pull request from P26 before it got closed.

Based on this feedback, we see that developers care about changes
that can result in substantially high amounts of runtime reduction.
In terms of absolute runtime, test classes that only take around
one second to run may not be worth it for developers to consider
improving. However, we have some accepted pull requests where
the test class takes only 1-2 seconds to run. We also observe that
additional changes such as injecting calls to test fixtures in targeted
methods may be too convoluted and irregular that they would not
consider unless runtime reductions are substantial enough.

We also measure the loss in coverage and mutants killed for ac-
cepted transformed test classes, finding only one test class with loss
in coverage (3.04% decrease) and two test classes with loss in mu-
tants killed (average 1.64% decrease). Once again, most test classes
did not have any loss in coverage nor mutants killed, and when
there are losses the reduction is low. Despite some loss, developers
still accepted the pull requests, suggesting the loss is acceptable.
RQ5 Summary: We submitted 15 pull requests to developers to
transform their test classes, with 9 merged and 2 pending.

Reducing Test Runtime by Transforming Test Fixtures

6 THREATS TO VALIDITY

Our implementation of TestBoost may have bugs. We reviewed
the code and logic to confirm that it indeed transforms test classes
as we need. Further, we check that the tests indeed pass after the
transformation; our evaluation consists only of tests that pass.

The runtime reductions we observe may not generalize to all
projects. We choose a diverse set of projects from prior work on
testing. When we run the tests to collect runtimes, we rerun them
multiple times before and after the transformations to collect an
average runtime, mitigating the effects of natural variance in run-
time. We also conduct a statistics test to measure for significance
in the differences for all runtime comparisons. While we develop
TestBoost specifically for JUnit and Java, we believe the general
idea is applicable to projects using other testing frameworks that
include have some concept of test fixtures that run in-between tests.

By changing test fixtures, we may be changing test function-
ality. We use the test results as an indication of behavior, aiming
to preserve the same passing tests outcomes after the transforma-
tions. The successful cases are when the transformations result in
tests passing, and we measure runtime reductions only for success-
ful cases. We submit transformed test classes as pull requests to
developers, so they can also check our changes.

7 RELATED WORK

Regression Testing Techniques. Common regression testing
techniques are test-suite reduction (TSR), regression test selection
(RTS), or test-case prioritization (TCP) [55]. TSR creates a reduced
test suite by removing from the test suite the redundant tests, com-
puted w.r.t. some coverage heuristics, e.g., removing tests that cover
the same lines [9, 10, 18, 24, 37, 44, 48, 58]. Prior work evaluated
loss in fault-detection capability using mutants, where some loss
may be acceptable. However, Shi et al. found that those reduced test
suites are not as effective at detecting real faults on future versions
of code [49], showing the risk of removing tests. In contrast, we
speed up testing without removing tests. We are similar to work by
Vahabzadeh et al. [52] that removed redundant statements in tests,
except we transform test fixtures to run less frequently.

RTS analyzes the changes between code versions and only runs
tests affected by changes. Prior RTS techniques mostly focused on
static or dynamic analysis to map changes to affected tests [14,
16, 19, 20, 29, 41, 43], with the goal of selecting fewer tests to run
faster. However, there is still risk that RTS does not select the
correct tests, and Zhu et al. developed RTSCheck to evaluate RTS
techniques, finding faults in RTS tools [60]. Recent work in RTS
leverage machine learning techniques to predict which tests could
fail after the changes [13, 38, 56]. These techniques may make
wrong predictions, thereby also risking to miss to select necessary
tests. Our approach speeds up testing while still running all tests.
One could also combine RTS with TestBoost, to select to run a subset
of already transformed test classes. Note that our transformations
ensure that test fixtures will run once before/after the test class,
ensuring isolation between them. Prior work found RTS works best
at the test class level for Java [16, 29], making them compatible.

TCP runs tests in an optimized order so tests more likely to
detect faults run earlier [36, 55]. TCP techniques use heuristics like
code coverage [45], diversity of code covered between tests [23], or

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

information retrieval [42, 46] to rank tests. TCP runs all tests, so
there is generally no runtime reduction. We also run all tests, but
we transform test classes to run faster with fewer test fixture calls.
Flaky Tests. Flaky tests can nondeterministically pass or fail when
run on the same version of code [11, 35]. One prominent type
of flaky tests are order-dependent flaky tests (OD tests), whose
outcomes change depending on the order in which they are run [35,
59]. These tests can fail due to relying on shared state modified by
other tests, e.g., they rely on another test to set up the shared state or
fail because another test modifies the shared state without cleaning.
Test fixtures may be used to setup that state or clean modified state
between tests, so our approach that transforms test fixtures can lead
to tests to become OD tests. Prior work proposed rerunning tests
in random orders [25, 53, 59], systematically generating test orders
to ensure pairs of tests get covered [31, 54, 59], or tracking shared
state between tests 8, 15, 17]. We rely on systematically generating
test orders to detect OD tests. Beyond detection, Shi et al. proposed
repairing OD tests by looking for “cleaner” tests in the test suite
that contains code to reset and clean the shared state [50]. Li et
al. followed up with work to generate such cleaners by analyzing
shared state and searching for the relevant reset methods [33].
These techniques have a similar effect as generating test fixtures.
Conversely, our approach reduces the effects of existing test fixtures,
having them not run before/after each test, which is what leads to
new OD tests. If needed, we inject calls to test fixtures in the specific
OD tests that fail as a more targeted way to reset shared state. Lam et
al. proposed partially enforcing dependencies between tests as to
mitigate their effects on regression testing techniques [26].

8 CONCLUSIONS

We propose TestBoost, an approach for reducing test runtime by
transforming test fixtures. Test classes with test fixtures run them
before/after each test, but tests may not always need these test
fixtures to run as frequently. TestBoost transforms the test fixtures
such that they run only once at the beginning or at the end of
the test class, running just once per test class instead of once per
test. TestBoost successfully transforms 500 out of 697 test classes,
resulting in zero test classes with OD tests. Further, the transformed
test classes with positive significant reductions in runtime has
average reduction in runtime of 28.39%; using these transformed
test classes in the test suite can reduce the overall test suite runtime
on average by 18.24%. In the future, we plan to look into more
efficient means to inject calls to test fixtures as to reduce extra
runtime needed by these extra calls, as well as looking into how to
do more fine-grained changes, extracting parts of the code in test
fixtures into static test fixtures, allowing a mix of both types of test
fixtures. Such fine-grained changes may allow for more test classes
to be transformed successfully.

ACKNOWLEDGMENTS

We thank Xingchen Qi for his help in formulating initial ideas of
this work and for exploring the use of running tests in random
orders to detect newly OD tests. This work is partially supported by
the US National Science Foundation under Grant Nos. CCF-2145774
and CCF-2217696, as well as the Jarmon Innovation Fund.

ASE

’24, October 27-November 1, 2024, Sacramento, CA, USA

REFERENCES

[12

[13

=
it

[15]

[16

[17]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28

[29]

2011. Testing at the speed and scale of Google. http://google-engtools.blogspot.
com/2011/06/testing-at-speed-and-scale-of-google.html.

2019. JavaParser. http://javaparser.org.

2023. GitHub Actions. https://github.com/features/actions.

2023. Reducing Test Runtime by Transforming Test Fixtures. https://sites.google.
com/view/transforming-test-fixtures.

2023. Travis-CL https://travis-ci.org.

2024. JaCoCo Java Code Coverage Library. https://www.eclemma.org/jacoco/.
2024. PIT Mutation Testing. http://pitest.org.

Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient De-
pendency Detection for Safe Java Test Acceleration. In International Symposium
on Foundations of Software Engineering. 770~781.

T. Y. Chen and M. F. Lau. 1998. A new heuristic for test suite reduction. Journal
of Information and Software Technology 40, 5-6 (1998), 347-354.

T.Y. Chen and M. F. Lau. 1998. A simulation study on some heuristics for test
suite reduction. Journal of Information and Software Technology 40, 13 (1998),
777-787.

Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019.
Understanding Flaky Tests: The Developer’s Perspective. In European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
830-840.

Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Improv-
ing Regression Testing in Continuous Integration Development Environments.
In International Symposium on Foundations of Software Engineering. 235-245.
Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. 2021. Empir-
ically Evaluating Readily Available Information for Regression Test Optimization
in Continuous Integration. In International Symposium on Software Testing and
Analysis. 491-504.

Emelie Engstrom, Mats Skoglund, and Per Runeson. 2008. Empirical evaluations
of regression test selection techniques: A systematic review. In International
Symposium on Empirical Software Engineering and Measurement. 22-31.

Alessio Gambi, Jonathan Bell, and Andreas Zeller. 2018. Practical test depen-
dency detection. In International Conference on Software Testing, Verification, and
Validation. 1-11.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In International Symposium on
Software Testing and Analysis. 211-222.

Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable test-
ing: Detecting state-polluting tests to prevent test dependency. In International
Symposium on Software Testing and Analysis. 223-233.

Dan Hao, Lu Zhang, Xingxia Wu, Hong Mei, and Gregg Rothermel. 2012. On-
demand test suite reduction. In International Conference on Software Engineering.
738-748.

Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, Alessandro Orso,
Maikel Pennings, Saurabh Sinha, S. Alexander Spoon, and Ashish Gujarathi. 2001.
Regression Test Selection for Java Software. In Conference on Object-Oriented
Programming, Systems, Languages, and Applications. 312-326.

Mary Jean Harrold, David Rosenblum, Gregg Rothermel, and Elaine Weyuker.
2001. Empirical studies of a prediction model for regression test selection. IEEE
Transactions on Software Engineering 27, 3 (2001), 248-263.

Michael Hilton, Jonathan Bell, and Darko Marinov. 2018. A Large-Scale, Longitu-
dinal Study of Test Coverage Evolution. In International Conference on Automated
Software Engineering. 53-63.

Yue Jia and Mark Harman. 2011. An analysis and survey of the development of
mutation testing. IEEE Transactions on Software Engineering 37, 5 (2011), 649-678.
Bo Jiang, Zhenyu Zhang, Wing Kwong Chan, and T. H. Tse. 2009. Adaptive
random test case prioritization. In International Conference on Automated Software
Engineering. 233-244.

James A. Jones and Mary Jean Harrold. 2001. Test-suite reduction and prioriti-
zation for modified condition/decision coverage. In International Conference on
Software Maintenance. 92-102.

Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A framework for detecting and partially classifying flaky tests. In International
Conference on Software Testing, Verification, and Validation. 312-322.

Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie.
2020. Dependent-Test-Aware Regression Testing Techniques. In International
Symposium on Software Testing and Analysis. 298-311.

Wing Lam, Stefan Winter, Angello Astorga, Victoria Stodden, and Darko Marinov.
2020. Understanding Reproducibility and Characteristics of Flaky Tests Through
Test Reruns in Java Projects. In International Symposium on Software Reliability
Engineering. 403-413.

Wing Lam, Stefan Winter, Anjiang Wei, Tao Xie, Darko Marinov, and Jonathan
Bell. 2020. A large-scale longitudinal study of flaky tests. Proceedings of the ACM
on Programming Languages 4, OOPSLA (2020), 1-29.

Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and

Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection
in Modern Software Evolution. In International Symposium on Foundations of

[30

[31

[32

[34

[35

(36]

[37

'@
&

(39]

[40

[41

[42

[43

[44

[45

[46

N
=

(48

[49

[50

o
)

Chengpeng Li, Abdelrahman Baz, and August Shi

Software Engineering. 583-594.

Owolabi Legunsen, August Shi, and Darko Marinov. 2017. STARTS: STAtic
regression test selection. In International Conference on Automated Software
Engineering. IEEE, 949-954.

Chengpeng Li, M Mahdi Khosravi, Wing Lam, and August Shi. 2023. Systemati-
cally Producing Test Orders to Detect Order-Dependent Flaky Tests. In Interna-
tional Symposium on Software Testing and Analysis. 627-638.

Chengpeng Li and August Shi. 2022. Evolution-aware detection of order-
dependent flaky tests. In International Symposium on Software Testing and Analysis.
114-125.

Chengpeng Li, Chenguang Zhu, Wenxi Wang, and August Shi. 2022. Repairing
Order-Dependent Flaky Tests via Test Generation. In International Conference on
Software Engineering. 1881-1892.

Yu Liu, Jiyang Zhang, Pengyu Nie, Milos Gligoric, and Owolabi Legunsen. 2023.
More Precise Regression Test Selection via Reasoning about Semantics-Modifying
Changes. In International Symposium on Software Testing and Analysis. 664-676.
Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In International Symposium on Foundations of
Software Engineering. 643-653.

Qi Luo, Kevin Moran, and Denys Poshyvanyk. 2016. A large-scale empirical com-
parison of static and dynamic test case prioritization techniques. In International
Symposium on Foundations of Software Engineering. 559-570.

Xue-ying Ma, Bin-kui Sheng, and Cheng-qing Ye. 2005. Test-suite reduction using
genetic algorithm. In International Conference on Advanced Parallel Processing
Technologies. 253-262.

Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive test selection. In International Conference on Software Engineering,
Software Engineering in Practice. 91-100.

Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming Google-scale continuous testing. In In-
ternational Conference on Software Engineering, Software Engineering in Practice.
233-242.

Pengyu Nie, Ahmet Celik, Matthew Coley, Aleksandar Milicevic, Jonathan Bell,
and Milos Gligoric. 2020. Debugging the performance of Maven’s test isolation:
Experience report. In International Symposium on Software Testing and Analysis.
249-259.

Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression
testing to large software systems. In International Symposium on Foundations of
Software Engineering. 241-251.

Qianyang Peng, August Shi, and Lingming Zhang. 2020. Empirically Revisiting
and Enhancing IR-Based Test-Case Prioritization. In International Symposium on
Software Testing and Analysis. 324-336.

Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test
selection technique. ACM Transactions on Software Engineering Methodology 6, 2
(1997), 173-210.

Gregg Rothermel, Mary Jean Harrold, Jeffery von Ronne, and Christie Hong. 2002.
Empirical studies of test-suite reduction. Journal of Software Testing, Verification
and Reliability 12, 4 (2002), 219-249.

G. Rothermel, R.H. Untch, Chengyun Chu, and M.J. Harrold. 1999. Test case prior-
itization: an empirical study. In International Conference on Software Maintenance.
179-188.

Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. 2015.
An information retrieval approach for regression test prioritization based on
program changes. In International Conference on Software Engineering. 268-279.
August Shi, Jonathan Bell, , and Darko Marinov. 2019. Mitigating the effects of
flaky tests on mutation testing. In International Symposium on Software Testing
and Analysis. 112-122.

August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov.
2014. Balancing trade-offs in test-suite reduction. In International Symposium on
Foundations of Software Engineering. 246-256.

August Shi, Alex Gyori, Suleman Mahmood, Peiyuan Zhao, and Darko Marinov.
2018. Evaluating Test-Suite Reduction in Real Software Evolution. In International
Symposium on Software Testing and Analysis. 84-94.

August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
A Framework for Automatically Fixing Order-Dependent Flaky Tests. In European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 545-555.

August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and Im-
proving Regression Test Selection in Continuous Integration. In International
Symposium on Software Reliability Engineering. 228-238.

Arash Vahabzadeh, Andrea Stocco, and Ali Mesbah. 2018. Fine-grained test
minimization. In International Conference on Software Engineering. 210-221.
Ruixin Wang, Yang Chen, and Wing Lam. 2022. IPFlakies: A Framework for
Detecting and Fixing Python Order-Dependent Flaky Tests. In International
Conference on Software Engineering (Tool Demonstrations Track). 120-124.
Anjiang Wei, Pu Yi, Tao Xie, Darko Marinov, and Wing Lam. 2021. Probabilistic
and Systematic Coverage of Consecutive Test-Method Pairs for Detecting Order-
Dependent Flaky Tests. In Tools and Algorithms for the Construction and Analysis

http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://google-engtools.blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html
http://javaparser.org
https://github.com/features/actions
https://sites.google.com/view/transforming-test-fixtures
https://sites.google.com/view/transforming-test-fixtures
https://travis-ci.org
https://www.eclemma.org/jacoco/
http://pitest.org

Reducing Test Runtime by Transforming Test Fixtures

of Systems. 270-287.
[55] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection and
Prioritization: A Survey. Journal of Software Testing, Verification and Reliability
22,2 (2012), 67-120.
[56] Jiyang Zhang, Yu Liu, Milos Gligoric, Owolabi Legunsen, and August Shi. 2022.
Comparing and Combining Analysis-Based and Learning-Based Regression Test
Selection. In ACM/IEEE International Conference on Automation of Software Test.
17-28.
Lingming Zhang. 2018. Hybrid regression test selection. In International Confer-
ence on Software Engineering. 199-209.

[57

(58]

[59]

[60]

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Lingming Zhang, Darko Marinov, Lu Zhang, and Sarfraz Khurshid. 2011. An
empirical study of JUnit test-suite reduction. In International Symposium on
Software Reliability Engineering. 170-179.

Sai Zhang, Darioush Jalali, Jochen Wuttke, Kivan¢ Muslu, Wing Lam, Michael D.
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In International Symposium on Software Testing and Analysis. 385—
396.

Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A
Framework for Checking Regression Test Selection Tools. In International Con-
ference on Software Engineering. 430-441.

	Abstract
	1 Introduction
	2 Example
	3 TestBoost
	3.1 Transformer
	3.2 OD-Checker
	3.3 Injector

	4 Methodology
	4.1 Dataset
	4.2 Metrics
	4.3 Running Environment

	5 Evaluation
	5.1 RQ1: Effectiveness of Transformations
	5.2 RQ2: Reduction in Test Class Runtime
	5.3 RQ3: Reduction in Test Suite Runtime
	5.4 RQ4: Fault-Detection Capability
	5.5 RQ5: Pull Requests

	6 Threats to Validity
	7 Related Work
	8 Conclusions
	References

