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ABSTRACT
Regression testing is important but costly due to the large number
of tests to run over frequent changes. Techniques to speed up re-
gression testing such as regression test selection run fewer tests,
but they risk missing to run some key tests that detect true faults.

In this work, we investigate the effect of running tests in different
test-orders on overall test runtime in Java projects. Variance in
runtime across different test-orders can be due to various reasons,
such as due to dependencies between tests. In our evaluation, we
run tests in different, random test-orders, and we find on average
that the slowest test-order per project can be slower than the fastest
test-order by 31.17%. We also develop a technique for guiding a
search for the fastest test-orders by clustering test-orders based
on their runtimes and generating test-orders based on observed
in-common relations between tests in the fastest test-orders.
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1 INTRODUCTION
Regression testing is an essential part of the software development
lifecycle, where developers run tests after every change, ensuring
their recent code changes do not break existing functionalities [49].
Despite its importance, regression testing is often time-consuming
and resource-intensive, especially as software systems and their
test suites grow in size and complexity [10, 28, 31].

Prior work proposed various regression testing techniques to ad-
dress the high cost of regression testing, such as test-suite reduction
(TSR), regression test selection (RTS), and test-case prioritization
(TCP) [49]. TSR and RTS both aim to speed up regression testing by
running fewer tests after every change. TSR reduces the test suite
size by removing redundant tests based on some heuristics, such
as code coverage [5, 7, 11, 13, 17, 19, 38, 41, 52]. RTS analyzes the
code changes and selects to run only the subset of tests affected
by those changes [9, 10, 12, 14, 15, 22, 28, 36, 37, 43, 45, 46, 50].
Since both TSR and RTS run a subset of the full test suite, there
is risk of missing to run some key tests that would fail and detect
newly-introduced faults [36, 42, 54].

Meanwhile, TCP aims to reorder tests to run in a different, better
order, where techniques prioritize the tests to first run those that
are more likely to detect faults, based on various metrics like code
coverage or diversity between tests [6, 16, 18, 25–27, 30, 35, 40,
47, 51]. As soon as a test fails, developers can immediately start
debugging even as other tests are still running. TCP still runs all
tests, so there is no risk of missing to run any test that can detect
newly-introduced faults, but all tests still need to be run, so even as
developers can debug earlier upon a failure, there is still machine

cost needed for running all tests. The general consensus is that the
time needed to run all tests in any order remains the same.

We propose a different means of reordering tests to speed up
testing even while running all tests. We intuit that there are other
reasons for why a full test suite can have varying runtimes when
run in different test-orders, such as due to dependencies between
tests [53] or machine properties. For example, Stratis and Rajan
previously studied how running tests in different test-orders can
have an effect on code caching and cache locality in C programs,
which in turn affects the overall runtime [48]. If there is variation
in runtime between different test-orders, then it stands to reason
that there are test-orders that run faster than others, and so a
developer would prefer to run the tests in that test-order while still
maintaining full fault-detection capability by running all tests.

In this work, we first demonstrate the variation in runtime be-
tween test-orders in Java projects through a preliminary study
where we randomize test-orders across 12 Java projects’ test suites,
running each test-order five times to collect a distribution of run-
times for each test-order. We find that the runtime indeed varies, on
average by 31.17% when comparing the fastest test-order’s runtime
to the slowest test-order’s runtime. We then propose a technique
for reordering tests to search for the fastest test-order by focus-
ing on relative positioning between test classes in the test-order.
Our technique is based on the intuition that a major reason for
differences in test-order runtimes is due to dependencies between
tests [20, 44, 53]. Our approach generates different test-orders by
following the relative ordering between tests found in-common
among already observed fastest test-orders. While this approach
is effective at generating the fastest test-orders for some projects,
likely due to there being dependencies between tests related to
performance, there are still other reasons for runtime variances in
different projects. Future work can focus on developing different
techniques for reordering tests based on these other factors.

2 PRELIMINARY STUDY
For our preliminary study, we want to measure the variation in
runtime across different test-orders. We evaluate on 12 open-source
Maven Java projects from GitHub, sampled from prior research on
software testing [23, 24, 33, 46]. If the project contains multiple
modules, we randomly take one module from the project and evalu-
ate on its test suite, as long as the test suite has more than five test
classes and runs longer than 15 seconds. Table 1 shows our evalua-
tion modules, where “ID” is an ID we give to each module for ease
of future presentation, “Project” is the name of the project, “Module”
is the name of the module in the project we use for evaluation, and
“TC” is the number of test classes in that module.

For each module, we randomly shuffle the test classes in the
test suite to form different test-orders. We generate 30 test-orders
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Table 1: Project characteristics and evaluation results.

# Clusters # Clusters Fastest Avg. gen. # Rnd. gen.
ID Project Module # TC (Random) (Guided) rank time (s) orders

M1 admiral compute 74 13 4 5 1.54 0
M2 incubator-dubbo dubbo-rpc/dubbo-rpc-dubbo 15 9 7 20 0.09 0
M3 commons-math commons-math-legacy 315 2 2 1 156.92 0
M4 hazelcast-jet hazelcast-jet-sql 90 2 4 1 2.00 1
M5 rocketmq acl 9 2 6 10 0.06 2
M6 Achilles integration-test-2_1 40 2 2 1 0.24 5
M7 languagetool languagetool-language-modules/uk 27 2 2 23 0.20 0
M8 jitwatch core 32 3 2 2 0.46 0
M9 flink flink-table/flink-table-runtime 123 8 2 6 5.44 0
M10 Openfire xmppserver 69 7 6 1 2.54 0
M11 commons-io . 200 7 2 1 37.58 0
M12 elastic-job-lite elasticjob-lite/elasticjob-lite-core 51 2 2 2 1.05 0
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Figure 1: Runtimes of different randomly generated test-orders
for project apache/incubator-dubbo.

per module, while ensuring each test-order to be unique and have
the same test outcomes (different test outcomes can be due to test-
order-dependencies [21, 53]; we generate a new test-order if tests
have different outcomes. We then run each test-order five times
to collect a spread of runtimes, obtaining a median runtime per
test-order. We run all our experiments in a Docker container built
from an Ubuntu 20.04 Docker image with JDK 17 and a modified
version of the Maven Surefire plugin that allows us to control the
test-order [3]. We run each module’s tests in its own container, and
we limit the container to use 2 CPUs and 8GB of RAM, similar to
resources available in continuous integration services [2, 4].

Figure 1 shows the spread of runtimes across these different
test-orders generated for tests in a module from project apache/-
incubator-dubbo. Each box represents the variation in runtime
(across five reruns) for a test-order. We see a wide range of runtimes,
with the fastest test-order having a median runtime of 144.72 sec-
onds, and the slowest having a median runtime of 236.70 seconds.
We can essentially compute a similar plot for all modules.

Figure 2 shows a violin plot of the median runtimes for all the 30
test-orders, per module. The red plots represent the distribution of
runtimes from the randomly generated test-orders. We observe that
most of the modules show variation in runtimes, especially modules
M1, M2, M3, and M4. We also observe that the average difference in
runtime across all test-orders per module is 23.04 seconds, where
on average the slowest test-order’s runtime is 31.17% slower than
the fastest test-order. Furthermore, we find all these differences
between fastest and slowest test-orders’ runtimes to be statistically
significantly different based on the Mann-Whitney u-test [29].

Note that several test-orders may have similar runtimes as each
other. We cluster the runtimes of different test-orders together and
observe how many clusters there are. We use the K-means clus-
tering algorithm from sklearn [34] while controlling for different
sizes of K (from 2 to the number of test-orders), and we find which
size K results in the highest silhouette score [39], an indicator of
how good the clustering is. The column “# Clusters (Random)” in
Table 1 shows the number of clusters computed this way across
the randomly generated test-orders. We see that each module has
at least two clusters, all with silhouette score higher than 0.5, indi-
cating the clustering is decent. Moreover, there are five modules
where the number of clusters is seven or more, indicating a wide
variety of runtimes across different test-orders for these modules.

To better understand some reason for why there can be differ-
ent runtimes per test-order, we looked into the relative ordering
of test classes across the different test-orders for the module in
project apache/incubator-dubbo (Figure 1), as the the results for
this module (M2) show the greatest variance in runtimes between
test-orders. We find that some test classes run longer when spe-
cific other test classes run first, despite having the same test out-
comes. For example, ChangeTelnetHandlerTest takes about 1 sec-
ond to runwhen it runs before ExplicitCallbackTest, but it takes
about 40 seconds when it runs after. Upon further investigation,
we found that tests in ExplicitCallbackTest add elements to a
shared global Map. The tests in ChangeTelnetHandlerTest would
use this shared Map, but they first clear the contents of this Map to
ensure proper test independence. While this action ensures the out-
come remains the same regardless of ordering between these two
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Figure 2: Variance in runtimes between test-orders.

test classes, the relative ordering has an effect on runtime, because
the ChangeTelnetHandlerTest has to spend more time clearing
out the Map if the ExplicitCallbackTest added those elements.

3 GUIDED SEARCH
Based on our inspection, we intuit that we can guide a search for
the fastest test-order based on which relative orderings between
test classes may result in speeding up runtime. We propose a guided
search process that relies on both clustering of test-orders with
similar runtimes and constraint solving to enforce perceived helpful
relative orderings between test classes.

Figure 3 shows pseudocode representing this clustering and con-
straint solving process. We start by randomly generating an initial
set of S different test-orders (Line 11); for our initial experiments,
we choose S to be 6. We run the test-orders five times each to collect
a distribution of runtimes. Our intuition is that we can construct a
better test-order than the ones we already observed by preserving
any relative orderings of test classes among the fastest test-orders
and reversing any relative orderings of test classes among the slow-
est test-orders. To determine which test-orders are the fastest and
slowest, we use K-means clustering to cluster test-orders based
on runtime (Line 19). We determine the best size K by iterating
through all possible K values (from 2 to the number of test-orders)
and choosing the one that results in a clustering with the highest
silhouette score. If that cluster has a silhouette score of less than 0.5,
we find that cluster to be not very good, and so we simply generate
a new random test-order for this iteration (Line 20).

We take the cluster with the fastest test-orders and the cluster
with the slowest test-orders, and we compare the relative orderings

of test classes between the test-orders in both clusters. For the
fastest test-orders, we observe which pairs of test classes have the
same relative orderings among all test-orders. We do the same
for the slowest test-orders in the other cluster. We construct a set
of constraints where we preserve the same relative orderings of
test classes in-common among the fastest test-orders and another
set of constraints where we reverse the relative orderings of test
classes in-common among the slowest test-orders. For example,
if test class T1 comes before T2 in all the fastest test-orders, we
output a constraint represented as a tuple (T1,T2), indicating that
in the test-order we want to generate, T1 must come before T2.
Conversely, if we observe in all of the slowest test-orders that T3
comes before T2, we output a constraint represented as a tuple
(T2,T3), which is the reverse of the relative ordering we observe
from the slowest test-orders, and we want to generate test-orders
where T2 comes before T3. We remove any contradictions, i.e., both
the fastest and slowest test-orders have some relative ordering of
test classes in-common, suggesting this relationship to be irrelevant
to runtime differences between test-orders. If we get an empty set of
constraints (Line 32), we simply generate a new random test-order.
Otherwise, we apply a “mutation” operator (Line 29), inspired by
evolutionary algorithms [32] to enable more diversity in results, by
reversing each constraint with a set probability (the inverse of the
size of the set of constraints).

We use these constraints to formulate a constraint solving prob-
lem, where the goal is to assign positions to all test classes within
the test-order while following the constraints of which test class
needed to be positioned before another. We use state-of-the-art con-
straint solver Z3 [1, 8] to solve for these constraints and generate a



Conference’17, July 2017, Washington, DC, USA Abdelrahman Baz, Minchao Huang, and August Shi

1 # OGOrder: arbitrary test suite order

2 # S: size of initial set

3 # N: # of random orders to generate and run

4 def random_cluster_and_solve(OGOrder , N):

5 # Run OGOrder and save its test outcomes

6 OG_test_results = run_order(OGOrder)

7 order_to_runtimes = collections.OrderedDict ()

8 order_to_runtimes[OGOrder] = OG_test_results

9

10 # Create and run initial set

11 while len(order_to_runtimes) < S:

12 new_order = generate_random_order(OGORder)

13 new_order_results = run_order(new_order)

14 if new_order_results == OG_test_results:

15 order_to_runtimes[new_order] = new_order_results

16

17 # Cluster , solve and run

18 while len(order_to_runtimes) < N:

19 best_n_clusters , score = find_kmeans_n_clusters(

order_to_runtimes)

20 if score < 0.5: # If we cannot cluster

21 new_order = generate_random_order(OGORder)

22 else:

23 # Cluster using Kmeans

24 fast_set , slow_set = find_fast_and_slow_sets(

order_to_runtimes , best_n_clusters)

25 # Extract constraints

26 constraints = extract_constraints(fast_set ,

slow_set)

27 if len(constraints) > 0:

28 # Mutate constraints

29 mutated_constraints = mutate(constraints)

30 # Generate a new order using Z3 solver

31 new_order = generate_using_constraints(OGOrder ,

mutated_constraints)

32 else:

33 new_order = generate_random_order(OGOrder)

34 new_order_results = run_order(new_order)

35 if new_order_results == OG_test_results:

36 order_to_runtimes[new_order] = new_order_results

37

38 return order_to_runtimes

Figure 3: Clustering and constrains solving pseudocode.

new test-order (Line 31). If at any point when we generate a new
test-order and the test outcomes are not consistent with previous
outcomes, we throw the test-order away and generate a new one.
We rerun test-orders five times to obtain a distribution of runtimes.

Figure 2 shows the spread of runtimes across different test-orders
generated by this guided search, in the green-colored plots. We ob-
serve for somemodules that the distribution of most of the runtimes
of test-orders generated using the guided search bunch up at the
bottom of the violin plot, namely for M1, M2, and M3. This charac-
teristic means that most of the test-orders are fast, which suggests
that the search is being guided towards the faster test-orders. We
also observe that for the modules M5, M7, M8, M9, M10, M11, and
M12, the distribution of the runtimes from the guided search mostly
overlaps with the distribution from random generation. As such,
both random test-orders and guided search test-orders have similar
runtime results for these modules.

In Table 1, we show under column “# Clusters (Guided)” the
number of clusters across the guided search test-orders, similar

to how we compute the number of clusters across the randomly
generated test-orders (Section 3). We observe that 5 modules have
the same number of clusters and 3 modules have more clusters.

We would also like to see whether the guided search can find
test-orders that have faster runtimes sooner, i.e., trying out fewer
test-orders to find the fastest test-order. If guided search is faster
at finding the fastest test-order, we could run that search fewer
iterations. The column “Fastest rank” in Table 1 shows at which
iteration does the guided search find a test-order that is in the same
cluster as the fastest cluster of test-orders. We notice that 3 modules
have their fastest test-order found later after the randomly gener-
ated initial set of test-orders (rank > 6). This result suggests that
the guidance from the constraints are useful in helping construct
faster test-orders. We also find that the guided search finds faster
test-orders than random generation (both the guided search and
random generation generate the same number of test-orders), for
modules M3 andM6. These results suggest that their tests’ runtimes
are likely affected by dependencies between tests, so our approach
at leveraging orderings between tests helps find faster test-orders.
Unfortunately, the approach is not as effective for other modules.

In Table 1, we also show under column “Avg. gen. time (s)” the
average time in seconds the guided search takes to generate a test-
order, with overall average time of 17.34 seconds. Modules with a
high number of test classes generally take more time to generate
test-orders due to the large number of constraints. The “# Rnd. gen.
orders” column shows the number of random test-orders the guided
search generated, excluding the 6 initial ones. In most cases, guided
search does not resort to generating a random test-order.

4 CONCLUSIONS AND FUTUREWORK
In this work, we investigate the effects of running tests in differ-
ent test-orders on the runtime. Our study on 12 open-source Java
projects’ test suites show significant variance in runtime between
test-orders, where the slowest test-order is on average 31.17% slower
than the fastest test-order. We develop a new approach that gen-
erates faster test-orders by clustering existing test-orders based
on runtime and constructing new test-orders based on in-common
relative orderings between test classes among the test-orders in the
clusters. This approach was effective at generating faster test-orders
than random generation for two projects.

In the future, we plan on developing an improved approach to
search for the fastest test-orders, with the goal to find the fastest
test-orders more efficiently than simply randomly generating test-
orders, as well as to generate test-orders that are even faster. We
plan on investigating further the various reasons for why tests run
faster in certain test-orders, such as due to JIT optimizations or
memory usage during testing, beyond the dependencies between
tests reason that was the focus of our proposed approach.
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