
Impact of JVM Configurations on Test Runtime
Abdelrahman Baz

The University of Texas at Austin
Austin, TX, USA
ambaz@utexas.edu

Milos Gligoric
The University of Texas at Austin

Austin, TX, USA
gligoric@utexas.edu

August Shi
The University of Texas at Austin

Austin, TX, USA
august@utexas.edu

Abstract—JVM provides dozens of configuration flags, with
many flags intended for tuning application performance. We
empirically study the impact of JVM configuration flags on
software testing runtime. We focus on an extensive study that
shows not only the great impact of JVM configurations on
test runtime (up to 43.89% reduction in runtime when using
certain configurations) but also shows that those configurations
that reduce runtime are rare and thus hard to find. Modern
techniques based on machine learning or combinatorial testing
that search through combinations of configuration flags are still
not as effective at finding the best configurations for test runtime.
Finally, we show that JVM configurations that provide good
speedup retain this power over a number of commits. We believe
that this paper provides strong motivation for further work on
finding the best JVM configurations to optimize test runtime.

Index Terms—JVM configurations, regression testing, perfor-
mance.

I. INTRODUCTION

Regression testing is an important part of the software
development process, but can be very costly. In regression
testing, developers run an existing test suite every time they
make changes to the code as to check that their changes do
not break any existing functionality [1]. However, test suites
can take a long time to run. Further, developers are frequently
making changes, triggering running the test suite for all those
changes, compounding the cost of testing [2]. This high cost
of testing remains a problem for developers in industry, both
in the cost of developers waiting for test results and machine
cost for running these tests [3]–[7].

We explore a novel direction of reducing the cost of
regression testing. In particular, in Java projects, tests are all
run in a Java Virtual Machine (JVM), that both interprets
and compiles/optimizes an execution dynamically, including
test executions. This JVM is highly configurable with flags
that control memory limits, garbage collection, optimization
levels, and more [8]. Our insight is that the JVM configuration
can have a high impact on test runtime. As such, there
may be a specific JVM configuration that can be used to
greatly speed up the runtime for a specific test suite on a
specific project. Furthermore, developers are running the same
tests after every change, usually without any changes to the
tests. When developers do make changes to the code under
test, prior work found that these changes tend to be rather
small [2], so the same tests are run on similar code, resulting
in similar execution traces. Therefore, running a test suite
in a JVM specifically tuned to reduce its runtime can result

in these tests running faster on all future versions of code
as well, thereby reducing the runtime of regression testing.
Also, tuning configurations for a specific test suite run would
likely lead to greater reduction in runtime than finding the
best configuration in which to run the program for all general
inputs, like for compiler autotuning [9]–[13].

We conduct an empirical study to evaluate the impact of
configuring a JVM on test runtime and motivate future work
in this new space. We evaluate on 20 popular open-source Java
projects that were used in past work on software testing [2],
[14]–[16]. For each project, we take a commit within that
project’s version history and search for flags to use from
the flag space. We consider a combination of these flags to
form a JVM configuration. We then measure the difference in
test runtime within this configured JVM versus the runtime
within the default configured JVM. Developers can use the
configuration that results in the greatest reduction runtime for
future runs.

We evaluate different strategies that can search through this
configuration flag space. First, we evaluate random generation,
where we generate JVM configurations by randomly combin-
ing flags. Second, we evaluate using a state-of-the-art machine
learning-based compiler autotuning technique, BOCA [13].
BOCA was previously evaluated on GCC, searching for an
optimal combination of compiler flags to use for compiling
and optimizing a specific program. BOCA’s goal is to produce
a compiled binary that can be efficient in most scenarios,
whereas our goal is to optimize for when running a specific test
suite. However, BOCA’s approach in searching for an optimal
combination of flags matches this problem domain, and so we
use it for comparison. Third, we evaluate using combinatorial
testing [17]–[19] to generate JVM configurations. Combinato-
rial testing techniques aim to generate a minimal combination
of flags such that all t-tuples of flags are included within those
combinations. The intuition is to test the interactions between
flags, which we use here to see whether those interactions lead
to better test runtime.

We find that random generation can generate configurations
that reduces test runtime on average by 11.90% across all
projects (up to 42.13% for one project, and reduce test runtime
for 17 out of 20 projects). In comparison, BOCA was only
able to generate configurations that reduce test runtime by
on average 2.58% (and only reduce runtime for five out of
20 projects). Using combinatorial testing, we could generate
configurations that reduce test runtime by 7.84% on average

(and only reduce runtime for 14 out of 20 projects). Further,
when we evaluate using the best configuration across many
commits in the project’s history, we still observe a reduction
in test runtime, with an average of 7.43% at each commit for
each project. These results show that a configuration can still
be relevant on commits beyond the commit for which they
were generated, so developers can reuse them.

We also experiment with using the same configuration when
running tests across commits while applying a regression test
selection (RTS) technique [1], [2], [14], [15], [20]–[25], which
runs a subset of tests after every change, to see whether the
configuration still provides a reduction in runtime even if
a different set of tests are run after the code changes. We
see that the average reduction in runtime, when using the
best configuration commits where RTS selects to run some
tests, is 8.28% compared against running those same, selected
tests in the default configuration. As such, the use of a new
configuration for the JVM can result in runtime reduction even
if developers are not running all tests.
The main contributions of our work are:

• Idea. We propose to modify the JVM runtime envi-
ronment specifically for a given test suite by exploring
JVM configurations as to reduce the test runtime. This
is the first work on optimizing test runtime via JVM
configurations. Our proposal stands in sharp contrast to
prior work that usually run fewer tests to reduce test
runtime.

• Study. We designed a study to evaluate the impact
of JVM configurations on test runtime through random
generation, an existing compiler autotuning approach, and
combinatorial testing, as possible means to generate the
configurations.

• Findings. Our results, on 20 open-source projects, show
that randomly generating configurations can reduce the
runtime by 11.90% on average, but finding good config-
urations is non-trivial. This reduction is much greater than
that found using the prior compiler autotuning approach
or combinatorial testing. Further, we find the reduction
persist even across changes, with on average 7.43%
reduction on each commit. The reduction also happens
when running a subset of tests using RTS, at on average
8.28% compared against running the subset of tests with
the default JVM configuration.

• Artifact. We share our scripts for running experiments,
the configurations explored by each approach for all
projects, and the experiment results [26].

Overall, our findings demonstrate the benefit in searching for
an optimal configuration of JVM for testing, motivating future
work in ways to find even better configuration(s) or more
efficient ways to search for a good configuration.

II. METHODOLOGY

We conduct an empirical study to evaluate whether different
JVM configurations can have significant impact on test run-
time. A JVM configuration consists of a combination of JVM

flags. For example, the following JVM configuration changes
(a) the default JIT compilation, (b) garbage collection, and
(c) the JVM runtime behaviors:
java -XX:-DoEscapeAnalysis
-XX:+UseSerialGC -XX:-UsePerfData
-Xshare:off
where the flags, in order, disable escape analysis, use the serial
garbage collector, disable collecting performance data, and
disables class data sharing during the JVM execution.

We run tests within a configured JVM to see whether its
runtime changes significantly compared against when run in
the default configuration. Note that, by default configuration,
we mean whatever is the configuration the project sets for
running tests. For the most part, the default configuration is
simply running the JVM without additional flags. A developer
would be most interested to see whether they can use a custom
configuration specific for a test suite such that running those
tests within a JVM using that configuration would speed up
their test runtime. (Note that we are not concerned with trying
to find some configuration that provides the same benefits for
generally any project’s test suite.)

To generate the configurations, we evaluate three strategies:
(1) a random strategy, (2) an ML-based compiler autotuning
approach, and (3) combinatorial testing strategies. We first
describe the initial flag space from which these strategies will
sample from and then describe how each strategy works.

A. Flag Space

Figure 1 shows our process to define the flag space, i.e.,
valid flags and dependencies among those flags.
Initial set of flags. First, we construct an initial set of
JVM flags from which to sample (1 in Figure 1). We start
with 178 documented JVM flags available in Java 8 (the
version that we use) [8]. However, many of these flags would
not have any (positive) effect on JVM performance, e.g.,
+PrintCompilation only prints out details concerning
internal JVM compiler optimizations. As such, we manually
perform an initial filtering of these flags.
Filtering irrelevant flags. We manually check the description
of the available JVM flags in the official Java documenta-
tion [8] and choose a subset based on our understanding of
how they might affect the runtime (2). This subset of flags
can be divided into four categories. We include (1) four Non-
Standard Flags, which are general purpose flags, e.g., Xmx=s
configures the max heap memory to be s; (2) four Advanced
Runtime Flags, which control the runtime behavior of the
JVM, e.g., UseCompressedOops enables the use of com-
pressed pointers; (3) 13 Advanced JIT Compiler Flags, which
control the just-in-time (JIT) compilation and optimizations,
e.g., TieredStopAtLevel=2 stops the JIT compilation at
optimization level 2; and (4) 19 Advanced Garbage Collection
Flags, which control JVM garbage collection (GC), e.g.,
UseParallelGC forces the JVM to use the parallel garbage
collector.
Values for flags. For flags involving binary choices, we choose
the configuration that does the opposite of default, e.g., we use

2

All documented flags

-XX:+PrintCompilation
-XX:HeapDumpPath=path
-XX:NewRatio
.....

Important flags
-XX:-TieredCompilation
-XX:NewRatio
.....

1

Flag space

>_

Run Tests
Runtimes

Analysis

Generate JVM
configurations

List of best
performing

combinations

Validate

Project Tests

Options

BUDGET

NUM_RERUNS

Strategies

Random

BOCA

Combinatorial

2 3 4
5

6

Fig. 1: Methodology to create the flag space.

the flag -C1ProfileCalls that disables profiling calls for
the sake of JIT compilation, which is normally “on” by default.
We do not explicitly include the default configuration flags in
the space, because not including the flag when sampling from
the space would be the same as explicitly including it. For
flags that take a value from a pre-determined set, the flag space
includes all those values, e.g., AllocatePrefetchInstr
has possible values of 0 (default), 1, 2, and 3, so we consider
using AllocatePrefetchInstr with values 1, 2, and 3 in
the flag space. For flags that take a value within a continuous
range, we choose two values: half and double the default value,
e.g., TargetSurvivorRatio=n requires a value n ranging
from 0 to 100, representing the garbage collector’s survivor
ratio, which by default is 50 in the JVM we use, so we choose
values 25 and 100 as other choices. Each choice constitutes a
new flag in the initial flag space. Ultimately, we have 72 JVM
flags in the flag space from which to sample from.
Extracting constraints. In addition, we manually inspect the
documentation to determine whether there are any depen-
dencies between the flags (3 in Figure 1). For example,
the flag ParallelGCThreads=n controls the number of
threads available for the parallel garbage collector, but it
only works when UseParallelGC is enabled. As such, if
a configuration includes ParallelGCThreads=n, it must
also include UseParallelGC. On the other hand, there
are flags that should not be in the same configuration. For
example, flags UseParallelGC and UseSerialGC both
configure which garbage collector to use, but they cannot
be used together. Similarly, we have explicit separate flags
when they require arguments, e.g., the flag space includes
ParallelGCThreads=2 and ParallelGCThreads=4,
but we cannot have both in the same configuration. We track
all dependencies and conflicts between flags to ensure that the
final combination of flags is valid.

In the end, our flag space contains 72 JVM flags, 6 depen-
dencies, and 59 conflicts in total.

B. Generation and Running

We generate configurations using one of three strategies
(4). Each strategy produces configurations to apply to the
JVM when running tests. For each strategy, after it generates
a configuration, we always validate the configuration w.r.t.

the dependencies and constraints we determined between flags
(5). If the configuration has a flag that is missing a depen-
dency, we include the additional flag. If we identify a conflict
between two flags, we determine the dependents of each of
these two flags in the current configuration and ultimately
remove the flag that has fewer dependents along with its
dependents, in order to avoid losing too many flags at once
in a configuration. We keep removing flags until resolving all
conflicts. We also check that we are always generating a new
configuration and not repeating seen ones.

We run all tests within a JVM using the generated config-
urations and check whether all tests have the same outcomes
compared against running the tests using the default JVM
configuration (6), i.e., we need to see the same passing
tests, failing tests, those with errors, or skipped tests as in
the default run. If tests do not preserve the same outcomes
under a generated configuration, we discard that configuration,
aiming to generate another one. We also set a timeout of twice
the default time to run tests and discard any configurations
that surpass this timeout as it is possible that tests under such
configurations run infinitely.

C. Generation Strategies

1) Random Generation: We randomly generate configura-
tions by sampling flags from the flag space. Figure 2 shows
pseudocode representing the random generation process. First,
we choose a random number comb_size between 2 and
len(flag_space) (line 9). The reason we set this comb_size
first is to allow for a roughly even distribution of the number
of flags within the eventual combination. We then randomly
sample comb_size flags to form a configuration (line 12).
After validating the configuration (line 15) and checking it is
new (lines 19-20), we add it to the overall list of configu-
rations, which get returned at the end. We configure random
generation to produce 60 configurations (budget = 60).

2) BOCA: BOCA is a compiler autotuning approach based
off of Bayesian optimization [13]. BOCA searches for an op-
timal set of optimization flags for C/C++ compilers. BOCA’s
goal is to optimize the compilation of a C/C++ program such
that the final compiled binary has good general performance,
better than if compiled using the default GCC compilation
flags. While BOCA has a different goal from ours (optimizing

3

1 def get_random_configurations(flag_space, budget):
2 # A list of configurations to configure the JVM
3 configurations = []
4 # The maximum number of of flags per combination
5 max_comb_size = len(flag_space)
6

7 while len(configurations) < budget:
8 # Randomly choose the size of the combination
9 comb_size = random.randint(2, max_comb_size)

10

11 # Randomly select flags without replacement to
form a combination

12 combination = random.sample(flag_space,
comb_size)

13

14 # Validate and adjust the combination
15 combination = validate_combination(combination)

16

17 configuration = ’ ’.join(combination)
18 # Check if it’s a new combination
19 if is_new(configuration, configurations):
20 configurations.append(configuration)
21 return configurations

Fig. 2: Algorithm for generating random configurations.

1 def boca_run(flag_space, initial_size, budget):
2 # A set of all configurations to configure the JVM
3 train = set()
4 result = 1e8 # Keep track of best runtime
5 for i in range(initial_size):
6 x = random.randint(0, 2 ** len(FLAGS))
7 x = generate_conf(x)
8 ...
9 # Run combination and train the model

10 ...
11 train.add((x, runtime(x)))
12

13 steps = 0
14 while initial_size + steps < budget:
15 ...
16 # Use train to generate candidates and predict

best solution based on a RF model
17 ...
18 train.add((best_solution, runtime(best_solution)

))

19 if best_result < result:
20 result = best_result
21 return train, result

Fig. 3: Algorithmic view of main BOCA steps.

the JVM for a specific test suite), we can still use the approach
to generate configurations, since they all consist of flags.

Figure 3 shows pseudocode representing a summary of a
BOCA run. Initially, BOCA constructs a surrogate model us-
ing Random Forest [27] based on an initial training set (lines 5-
11) that maps configuration to the runtime, so the model can
predict runtime per configuration. After training the model,
BOCA identifies a new set of candidate configurations, con-
sidering both exploitation and exploration of flags, and it uses
the model to predict the runtime for each one. BOCA takes the
generated configuration with the best expected improvement
and runs the tests five times in a JVM using that configuration

to get the actual test runtime. If tests fail to run under a
configuration, BOCA re-generates candidates again and tries
to run the best one until a configuration is successful. This
new pair of configuration and runtime is added to the training
set as to retrain the surrogate model for another iteration of
prediction and subsequent retraining (line 18). We configure
BOCA to run until observing runtime for 60 configurations,
the same as random generation. Finally, we have BOCA
return all configurations it ran, along with their runtimes. The
overall intuition behind BOCA is that the surrogate model can
quickly guide the search process towards the configurations
that provide the best runtime without actually needing to run
anything, and the multiple iterations allow for the model to
continuously be updated and improved.

While we evaluate BOCA using its default experimental pa-
rameters [13], we decide to modify some of these parameters
to improve the process. We find that the initial training set is
rather small (just two data points [13]), and training initially
on more data can make a better initial surrogate model for
predictions, so we change the initial training set size to 10.
Furthermore, we feel the amount of reruns that BOCA uses to
establish the actual runtime for a configuration to be too small
(only 5), so we update the number of reruns to be the same
used for establishing statistical significance (Section III). We
refer to this modified version of BOCA as BOCAm.

3) Combinatorial Testing: Combinatorial testing aims to
efficiently test interactions between configuration flags in a
system [17]–[19]. The intuition is that bugs in a configurable
system are due to the interactions between just a few of
those configuration flags, so the goal is to generate a minimal
number of combinations of flags that encompass all t-wise
tuples of those flags, where t is some small number like 2 or 3.
We can similarly apply combinatorial testing techniques to our
problem domain, with the intuition that interactions between
the flags impact the test runtime. Combinatorial testing then
outputs configurations that cover all t-wise tuples of flags.

We specifically use a state-of-the-art combinatorial testing
technique SamplingCA [19] that can efficiently generate com-
binations that cover all pair-wise (t=2) tuples of flags. We
ensure that the constraints between flags are preserved in each
combination and that all pairs of flags are covered by the
combinations. However, finding an optimal configuration for
the JVM to run tests may require more complex interactions
between flags, beyond just pairs. As such, we also evaluate
three-wise (t=3) combinatorial testing with our own code: 1)
we generate all possible three-wise tuples of all flags in the
flag space and consider them uncovered, 2) while we still have
uncovered tuples, we create a new empty combination of flags,
3) we iterate through the uncovered tuples and add each one
to the combination if adding it keeps the combination valid,
4) we remove all tuples covered by the new combination from
the uncovered set, and 5) we confirm that the combinations
together cover all three-wise combinations. Unlike for random
or BOCA, we only run as many configurations that these pair-
wise or three-wise strategies would generate, namely 15 and
45 configurations, respectively.

4

TABLE I: Evaluation projects. ‘Runtime’ is in seconds.

ID Project SHA # Tests Runtime

P1 google/compile-testing b6e19e9 231 5.15
P2 *apache/commons-email 00cc321 191 5.59
P3 logfellow/logstash-logback-encoder 7044d87 462 6.69
P4 *jhy/jsoup afc38d8 1181 6.96
P5 apache/commons-csv 547c5a2 829 8.60
P6 apache/commons-codec e2cecc7 1339 12.35
P7 apache/commons-collections dc6d9f8 6386 19.41
P8 *apache/commons-jexl f8725b2 964 24.29
P9 JSQLParser/JSqlParser 0ec2600 1608 24.94
P10 *apache/commons-configuration ed32b41 2873 27.81
P11 *apache/commons-beanutils 41f7b90 1353 35.49
P12 asterisk-java/asterisk-java 5c16184 358 36.08
P13 *apache/commons-imaging c021adf 991 41.72
P14 fasterxml/jackson-core 90eaabb 1291 56.39
P15 apache/commons-bcel c819e54 375 59.55
P16 apache/commons-compress 74256e9 2400 65.00
P17 apache/commons-net 26fbd9e 415 65.91
P18 *tabulapdf/tabula-java 8bfa3ad 210 73.83
P19 *apache/commons-dbcp 6f7ec82 1501 104.22
P20 addthis/stream-lib af045cb 137 142.78

III. EXPERIMENT SETUP

We address the following research questions:
• RQ1: How much reduction in test runtime can be

achieved by applying different JVM configurations?
• RQ2: How much can the best configuration be minimized

and which flags are the most common between projects?
• RQ3: How much reduction in test runtime can the best

configuration maintain across commits?
• RQ4: How much reduction in test runtime can the best

configuration maintain even when running different tests
using regression test selection (RTS)?

We address RQ1 to check whether running tests using a JVM
under different configurations can significantly reduce test
runtime. We address RQ2 to see whether a configuration can
be minimized, removing redundant/unnecessary flags while
preserving runtime reduction. We are interested to see whether
there are flags that are useful across different projects. We
address RQ3 to see whether the proposed configurations can
maintain a reduction in runtime even as developers make
changes to their project. Finally, we address RQ4 to see
whether the reduction in runtime persists even if developers are
not running all the tests. Since developers would commonly
use regression test selection (RTS) [2], [4]–[6] as part of their
development process, we want to see whether changing the
JVM configuration can help reduce runtime even further on
top of RTS.
Subjects. We perform our study on 20 open-source Java
projects from GitHub. We collect these projects based on prior
work on RTS [2], [14]–[16], where researchers evaluated their
test runtimes across many commits. We select single module
Maven projects that build using Java 8 and can finish the end to
end experiment within 24 hours. For each project, we take the
latest commit at the time of our experiments, and we generate
different configurations at this commit. Table I lists for each
projects an ID for use in later tables, the commit we use, the

number of tests, and test runtime (in seconds) in the default
configuration. If the project uses some JVM flags for their
testing, we mark that project with * in the table.
Experimental steps. To measure statistical significance in run-
time differences between configurations, we rerun all config-
urations 10 times to collect a distribution of test runtimes. We
compare this distribution of runtimes against the test runtimes
collected from running the tests in the default configuration the
same number of times, and we use the Student’s t-test [28] to
compare the two distributions.
Configuration minimization. To minimize the flags in a
configuration, we iteratively run tests under a JVM configured
using subsets of flags from the initial configuration. For
instance, if we have a set of flags represented as {f1, f2,
f3, f4}, the process begins by checking the impact of f1 on
test runtime. Subsequently, if this individual flag does not yield
the expected reduction in runtime over running in the default
configured JVM, we try the subset combination {f2, f3,
f4}. If this subset combination of flags provides a similar
or better improvement as the the original combination {f1,
f2, f3, f4} that we started with, then the subset {f2,
f3, f4} becomes the new subset we want to minimize.
This process continues, systematically evaluating different
combinations of flags, until either an individual flag is found to
be sufficient or all flags have been checked individually. In the
end, we sort all the configurations we tried during the process
and pick the best configuration that provides a similar or better
improvement as the initial starting one. We acknowledge that
different minimization techniques are possible, but we leave
exploring those for future work.
Running across commits. We run the tests under the best
configuration found for the project on the latest commit
across 50 commits going backwards in history from that
latest commit for the project. We also run using the best
configuration across commits while applying RTS. We use
STARTS, a static, class-level RTS technique [14], [15], [29].
If STARTS determines no tests should be run due to some
changes, we ignore these commits. For the other commits
where tests are run, we measure runtime when running those
tests with the best configuration and in the default JVM.
Hardware configurations. We run all our experiments in a
Docker container built from an Ubuntu 20.04 Docker image.
We use JDK 8 and Maven 3.8.3, and we use Python 3 for
data collection and analysis. We run each project in its own
container and we limit the container to use 2 CPUs and 8GB of
RAM, similar to resources available in continuous integration
services [30], [31].

IV. EVALUATION

A. RQ1: Reduction in Test Runtime

Figure 4 shows for each project a boxplot representing the
spread of runtime reduction achieved using the randomly gen-
erated 60 configurations, compared against using the default
JVM configuration. The dashed red line across the boxplots
represents 0%, namely having the same runtime as when

5

TABLE II: Number of significant differences in runtimes across randomly generated configurations per project.

Project P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Signf. pos. 12 6 19 1 6 5 13 1 1 8 7 6 8 7 19 8 0 0 0 26
Signf. neg. 33 33 26 35 19 34 9 18 46 46 26 38 46 43 19 50 46 58 11 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Project

150

100

50

0

50

Pe
rc

en
t (

%
)

14.40%
7.25%

14.51%
8.28%

14.25%13.23%13.62%
20.93%

9.65% 7.75%

42.13%

4.91%
13.35%13.25%

19.65%
8.72%

0.00%
1.86%

8.85%
12.11%

Fig. 4: Boxplots of median runtime reduction (higher is
better) per project for randomly generated configurations.

using the default JVM configuration. We see from the figure
that the test runtime is indeed impacted by the change in
JVM configuration. While most JVM configurations result in a
negative reduction in runtime (i.e., test runtime is higher than
that when run in the default JVM configuration), we see that
there exists configurations that result in positive, statistically
significant reduction in runtime (data above the red line).

Table II shows, for each project, the number of randomly
generated configurations with a positive reduction in runtime
(top row) and the number with a negative significant reduction
(bottom row). (Runs that were not statistically significant are
not counted.) Only three projects, P17, P18, and P19, did not
have a configuration that performs better than the default.

Figure 5 further illustrates the comparison between the test
runtime in the default JVM configuration versus that achieved
in the configuration resulting in the biggest reduction in
runtime. Each plot shows two boxes, where the left box shows
the 10 runtimes from running the tests in the default JVM
configuration while the right box illustrates the 10 runtimes
from running the tests in the best configuration generated for
that project. The dashed red line is the median runtime found
for the default runtimes. For all but one projects, we see that
the median runtime from the best configuration runtimes is
lower than that from the default JVM configuration. In fact,
for most projects, we observe that all runtimes collected for
the best configuration are lower than all runtimes collected
for the default JVM configuration. There are a few projects
where there is substantial overlap in runtimes between the two,
suggesting no statistically significant difference.
Random generation. Table III tabulates the median reduction
in runtime achieved by the best configuration found from
randomly generating configurations, per project (column “Rnd.

(%)”). We measure reduction as the difference between the
median runtime in the default JVM and the median runtime
using the best configuration, divided by runtime in the default
JVM (the bigger the better). We only show the reduction in
the table if there is a positive, statistically significant reduction
(p < 0.05), and we show 0 otherwise (a developer would use
the default JVM configuration). For the projects where there
is a configuration that reduces runtime, the reduction ranges
from 4.91% to 42.13% compared against default.
BOCA. Table III also shows per project the median reduc-
tion in runtime achieved by the best configuration found by
using BOCA (column “BOCA (%)”) and BOCAm (column
“BOCAm (%)”). We see that BOCA and BOCAm could
generate a configuration that significantly reduces runtime for
only five and seven projects, respectively. For every other
project, we present the reduction as 0 to indicate no significant
runtime reduction. Interestingly, for four of these projects
where BOCA achieves a reduction in runtime, that reduction
is higher than the best configuration found using random
generation, with even one project where BOCA finds a config-
uration that reduces runtime whereas the random generation
does not. For BOCAm, we observe three projects where
BOCAm generates a configuration better than the best one
generated randomly. However, overall, the average reduction
in runtime across all projects is only 2.58% (including the 0
reduction for many of the projects) and 4.26% for BOCA and
BOCAm, respectively, indicating that the BOCA strategy is
not as effective. These results suggest that existing machine
learning-based approaches are lacking in this new domain of
configuring the JVM to optimize test runtime.
Combinatorial testing. Table III also shows per project the
median reduction in runtime achieved by the best configura-
tion found by using pair-wise testing (column “2-wise (%)”)
and three-wise testing (column “3-wise (%)”). For pair-wise
testing, the average reduction in runtime across all projects is
only 4.79%. Only five projects could use one of the pair-wise
testing configurations to achieve a reduction in runtime. For
three-wise testing, the average reduction in runtime across all
projects is 7.84%, which is higher than pair-wise. Further, 14
projects could use one of the three-wise testing configurations
to achieve a reduction in runtime. These results suggest that
higher reduction in runtime comes from exploring interactions
between more flags, i.e., the interactions between pairs of flags
is insufficient to substantially reduce runtime. However, all
these configurations still do not have as much reduction as
configurations generated randomly. These results suggest that
substantial runtime reduction requires more complex interac-
tions between flags in this domain. It is possible that higher
t-wise testing would find better configurations for all projects
at the expense of needing to try many more configurations.

6

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

P1
5.0

5.2

5.4

5.6

5.8

P2
5.6

5.8

6.0

6.2

6.4

6.6

6.8

P3

6.0

6.5

7.0

7.5

8.0

P4
6

7

8

9

10

11

12

13

P5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

P6
16

17

18

19

20

P7
15

20

25

30

35

40

45

P8

22

23

24

25

26

P9

25.0

25.5

26.0

26.5

27.0

27.5

28.0

P10

20

25

30

35

40

45

50

55

P11
34.0

34.5

35.0

35.5

36.0

36.5

37.0

37.5

P12

36

38

40

42

P13

47.5

50.0

52.5

55.0

57.5

60.0

62.5

P14

45

50

55

60

65

70

P15

58

60

62

64

66

P16
65.0

65.5

66.0

66.5

67.0

67.5

P17
71

72

73

74

75

76

P18
95

100

105

110

115

120

P19

125

130

135

140

145

P20

Fig. 5: Default (box on the left) vs. best (box on the right) configuration runtimes for each project, measured in seconds.
Dashed red line is median of default runtimes. Solid yellow is the median of best configuration runtimes. Dashed green line
is the mean of each box runtimes.

RQ1: Different JVM configurations can significantly
impact test runtime. Randomly generating these con-
figurations can result in configurations that reduce the
runtime by 11.90%, on average. BOCA and combinatorial
testing can generate configurations that reduce runtime
on average by 4.26% and 7.84%, respectively, which is
less than that achievable by simply randomly generating
configurations.

For all remaining research questions, we consider only
the best configurations generated randomly, given that those
configurations generally provide greater reductions in runtime

among all strategies.

B. RQ2: Minimal Common Flags

Table IV shows the results of minimizing the set of flags
from the best configuration generated. We show results only
for projects where there was actually a configuration that
significantly reduces runtime (so we do not show results
for projects P17, P18, and P19). We show for each project
the number of flags remaining after minimization compared
against the number of flags originally in the best randomly
generated configuration, before minimization. When there is
only one flag remaining after minimization, we also show what
the flag is in the table (column “Single flag”).

7

TABLE III: Reduction in runtime.

Project Rnd (%) BOCA (%) BOCA m (%) 2-wise (%) 3-wise (%)

P1 14.40 0.00 12.13 14.38 13.22
P2 7.25 12.46 5.40 0.00 11.75
P3 14.51 16.33 14.79 9.99 14.78
P4 8.28 0.00 0.00 0.00 10.09
P5 14.25 0.00 0.00 11.34 14.48
P6 13.23 11.12 0.00 0.00 3.86
P7 13.62 0.00 0.00 0.00 8.51
P8 20.93 0.00 24.41 0.00 0.00
P9 9.65 0.00 9.58 0.00 0.00
P10 7.75 10.12 11.17 16.21 14.56
P11 42.13 0.00 7.62 43.89 43.14
P12 4.91 0.00 0.00 0.00 3.11
P13 13.35 0.00 0.00 0.00 3.13
P14 13.25 0.00 0.00 0.00 0.00
P15 19.65 0.00 0.00 0.00 8.68
P16 8.72 0.00 0.00 0.00 3.36
P17 0.00 1.52 0.00 0.00 0.00
P18 0.00 0.00 0.00 0.00 0.00
P19 0.00 0.00 0.00 0.00 0.00
P20 12.11 0.00 0.00 0.00 4.03

Average 11.90 2.58 4.26 4.79 7.84

TABLE IV: Minimized configurations.

Min. Orig. Red.
Project len. len. inc. Single flag

P1 5 29 0.00 -
P2 1 7 2.91 XX:C1UpdateMethodData
P3 1 26 1.00 XX:TieredStopAtLevel=2
P4 1 32 0.85 XX:SurvivorRatio=16
P5 27 27 0.00 -
P6 1 11 17.05 XX:C1ProfileCalls
P7 28 34 0.00 -
P8 17 17 0.00 -
P9 5 21 0.53 -
P10 1 8 9.34 XX:TieredStopAtLevel=2
P11 7 11 1.43 -
P12 10 10 0.00 -
P13 1 4 1.34 Xnoclassgc
P14 1 11 10.94 XX:DoEscapeAnalysis
P15 11 11 0.00 -
P16 1 24 6.27 XX:NewRatio=1
P20 1 5 8.99 XX:C1OptimizeVirtualCallProfiling

TABLE V: Most common flags after minimization.

Flag # Projects

-XX:-C1ProfileCalls 5
-XX:TieredStopAtLevel=2 5
-XX:-UsePerfData 4
-Xshare:off 4
-XX:+UseCondCardMark 4

We see that the number of flags after minimization drops
substantially, with 10 projects having just one flag. Only
four projects have the same number of flags remaining after
minimization (projects P5, P8, P12, and P15), suggesting that
their runtime reductions require the interactions between all

flags in the configuration. On average, the number of flags
in each best configuration drops from 16.94 to 7.00 after
minimization. Interestingly, we observe that for cases where
we could remove flags, there is an even greater reduction in
runtime. We show the additional percentage-point increase in
reduction in the table per project; the average increase is 3.57
percentage-points.

Table V shows the top five flags found among the
minimized best configurations across all projects, ranked
by their frequency among projects (column “# Projects”).
The most common flags are -C1ProfileCalls and
TieredStopAtLevel=2, which are flags related to JVM
JIT optimizations. -C1ProfileCalls stops the JVM from
profiling method calls for information to make optimization
decisions; removing profiling can reduce runtime overhead.
TieredStopAtLevel=2 prevents the JIT compiler to op-
timize at the highest level, which requires more profiling that
adds overhead. The prevalence of these flags suggest that
projects’ tests are fast-running enough that it is not worth it
for the overhead needed to determine when to optimize at
the highest level. However, these flags only occur among five
projects, so most projects do not share any common flags,
suggesting that there is no “easy” solution of using just a few
flags that would generally reduce test runtime of any project.

RQ2: We can reduce the number of flags in the best
configurations while still preserving or even improving
the reduction in runtime. We observe some flags that are
in common among the best configurations after minimiza-
tion, but not among the majority of projects.

8

TABLE VI: Reduction in runtime across commits.

Project # Commits Red. (%) # Commits > 0%

P1 50 12.61 50
P2 50 5.19 50
P3 50 12.16 50
P4 50 9.99 50
P5 50 9.52 50
P6 50 9.20 50
P7 50 3.58 42
P8 50 15.48 50
P9 40 -0.58 14
P10 50 10.39 50
P11 49 43.46 49
P12 50 0.66 35
P13 50 -0.23 21
P14 50 -6.26 2
P15 50 3.08 50
P16 50 -1.38 16
P20 50 -0.48 21

Average - 7.43 -

C. RQ3: Reduction in Runtime across Commits

Table VI show the results of running tests across multiple
commits with a JVM configured using the best randomly
generated configuration, found on the starting commit. We can
only evaluate on commits for which we can build the code on
that commit; the total number of commits we evaluate per
project is shown under the “# Commits” column. Also, we
exclude the projects where we do not find a configuration that
statistically significantly reduces the runtime from the default
(Section IV-A), representing when a developer would simply
use the default JVM configuration.

On average, the best configuration maintains a reduction of
7.43% in runtime across commits. We also show the number
of commits for which the configuration achieves a positive,
significant reduction in runtime over the runtime from running
in the default JVM, under column “# Commits > 0%”. We
see that 9 projects maintain a positive reduction across all 50
commits.

Figure 6 illustrates how much the reduction in runtime
varies from commit to commit for each project when running
under the generated configuration. The figure shows a box
per project (ID on x-axis) where the y-axis is the percentage
reduction relative to runtime from running in the default
JVM on the corresponding commit. We see that the possible
reduction can range widely for different projects and their
commits, with some commits even having increased runtime.
However, overall, most of the boxplot values remain above 0
(the dashed red line), indicating a general reduction in runtime
across commits.

RQ3: Reusing the best configuration generated on one
version of the project can still reduce the test runtime on
other commits, with an average reduction in runtime per
commit of 7.43%.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20
Project

20

10

0

10

20

30

40

50

Pe
rc

en
t (

%
)

Fig. 6: Distribution of reduction in runtime across commits
per project.

TABLE VII: Reduction in runtime across commits with RTS.

Project # Commits Red. (%)

P1 49 19.21
P2 9 3.91
P3 19 16.74
P4 30 12.35
P5 12 12.02
P6 15 10.50
P7 21 9.52
P8 21 13.84
P9 26 -6.42
P10 24 12.31
P11 13 34.44
P12 16 -2.11
P13 21 0.69
P14 34 -2.61
P15 8 2.16
P16 26 2.91
P20 8 1.23

Average - 8.28

D. RQ4: Reduction in Runtime with RTS

Table VII show the results of running tests via RTS across
multiple commits with a JVM configured with the best
randomly generated configuration. We report in the tables
the number of commits on which we evaluate (column “#
Commits”), given that the RTS tool STARTS may select to
run no tests based on the changes (Section III). We show the
runtime reduction compared against running the same tests
selected using RTS across commits but using the default JVM
configuration. On average, we see that the best configuration
maintains an average reduction in runtime of 8.28%.

Figure 7 shows boxplots of the range of runtime reductions
across commits on which we run STARTS. Compared against
the results when not using RTS, we observe more projects with
higher variance in the reduction in runtime across commits,
possibly due to generally running fewer tests using RTS.

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20
Project

150

100

50

0

50

Pe
rc

en
t (

%
)

Fig. 7: Distribution of reduction in runtime across commits
with RTS per project.

RQ4: The best configuration can still provide a reduction
in runtime across commits even when run on top of using
RTS techniques that run fewer tests, with an average
percentage reduction in runtime of 8.28%. Running tests
under custom JVM configurations can help reduce the
cost of regression testing even further when combined
with RTS.

E. Discussion

Reduction in runtime. To better understand the reduction
in runtime, we examine further the tests from project P11,
which had the highest reduction in runtime (Table III). We
observe one test class, MemoryLeakTestCase that takes
about 82% of the entire test suite runtime. The tests within
MemoryLeakTestCase try to force the garbage collector
to run by filling up memory. As a result, the tests are highly
affected by the garbage collection policy. We find that the
minimized configuration that preserves the runtime reduction
for this project indeed includes flags that modify the garbage
collection policy.

Concerning cases where there is no reduction in runtime, we
inspected the tests of these projects further. For projects P18
and P19, none of the strategies for generating configurations
could generate one that reduces runtime. From Figure 4, we
see that project P18 has most of its randomly generated config-
urations resulting in negative reduction in runtime, suggesting
that while the tests in this project are impacted by changes
in configurations, it can be difficult to find one that actually
reduces the runtime. For project P17, we see from Figure 4
that the distribution of runtimes obtained from the randomly
generated configurations is very tight, with most of them
very close to 0 reduction. When we investigated the tests
in P17, we find one test class, TelnetClientTest that
takes about 70% of the test suite runtime. The tests within
TelnetClientTest call Thread.sleep() with a large
wait time, which forces each test to run at least as long as that

time. As such, the test runtimes are more affected by these long
wait times than any changes due to different configurations.
Configurations that lead to different test results. Recall
from Section II that it is possible that tests do not exhibit
the same results when run under some configurations, and we
have to discard these configurations. For some projects, we
observe a high number of configurations that lead to different
test results, with as much as 237 for one project. We looked
into the reasons for why tests have different results under
certain configurations, and we find that for the most part the
tests are actually being skipped. We see that these tests use
Assumptions, an API built into JUnit that allows a test to
be skipped if certain dynamic conditions are not met, such
as having enough available memory. Given that many of the
flags affect conditions such as memory, several configurations
that use such flags can result in these tests being skipped.
We also observe tests that error and fail when they used to be
passing due to similar reasons involving configurations. Future
work that aims to efficiently generate valid configurations for
a specific test suite would need to take into account these
relations between tests and flags as to avoid using such flags
as part of the search.
Running cost. While random generation seems to be the
most effective at generating configurations that can reduce
test runtime, our random generation experiments on average
take around 15 hours per project, mainly due to the 10 reruns
per configuration we use to collect enough runtimes as to
perform statistical analysis. If a developer were to directly
use this approach to search for a configuration that reduces
the test runtime the most, they would encounter this search
cost. Potentially, a developer could run this search on a weekly
basis (over the weekends), and the continuous integration test
runs over the subsequent week can use the best configuration
found, allowing faster testing that entire week. However, we
note that, in this work, we are focused on evaluating the
impact of changing JVM configurations on test runtime, and
the presented techniques we use may not be the most efficient
still. Future work can explore less costly approaches to achieve
similar reductions, e.g., not rerunning tests 10 times per
configuration during search.

V. THREATS TO VALIDITY

Our results may not generalize to all projects. We create our
evaluation dataset by consulting prior work with the similar
goal of reducing test runtime, i.e., work on RTS, and filter
out those whose test runtime is too short. We run the tests
from each project in a Docker container configured to be
similar to those provided by common continuous integration
platforms [30], [31]. The test runtimes we observe are repre-
sentative of what developers would see when they run in their
continuous integration.

To scale our experiments, we ran each project in it own
Docker container. We configure each container to use the
same resources and run multiple containers simultaneously
on the same machine (Section III). We believe we have

10

taken the proper steps to mitigate the noise from running our
experiments at different times.

Machine performance could be impacted by various factors,
e.g., background processes running on a machine, so runtime
might differ for the same experiment across several days. To
mitigate this problem, we compare any non-default run with
the default run that we ran closest in time to it.

VI. RELATED WORK

Regression test selection (RTS) aims to run only the tests
impacted by the changes as code evolves via analyzing the re-
lationship between code changes and tests [2], [15], [20]–[23],
[25], [32] or even through machine learning to predict which
tests’ outcomes differ after the change [6], [33]–[35]. However,
RTS techniques can be unsafe, i.e., they miss to select truly
impacted tests due to limitations in the selection approach [36],
[37]. Test-suite reduction (TSR) analyzes the tests on a single
code version, removing tests that are redundant w.r.t. some
metric, such as code coverage [38]–[45]. While the reduced
test suites run faster on future commits, they may still miss
to detect future faults because the relevant tests are not in the
reduced test suite anymore [46]. Finally, test-case prioritization
(TCP), in contrast with RTS and TSR, does run all tests, but
runs them in a different order as to prioritize the tests likely
to detect faults, based on metrics like code coverage or code
diversity [47]–[56]. While TCP does not miss to run relevant
tests, the runtime overall remains the same. In contrast with
all these techniques, we study the impact of using different
JVM configurations to speed up testing while running all tests,
without risk of missing to run key tests. We also evaluate how
this idea of using a custom JVM configuration for tests can be
combined with RTS to have additional reductions in runtime.

Prior work on configuration testing focused on exploring the
space of configurations to expose faults in highly configurable
software, both in how to efficiently explore that space while
avoiding the combinatorial explosion problem and to better test
configurations as software evolves [57]–[63]. While we also
evaluate searching through a configuration space, specifically
for the JVM, our focus is not on detecting faults that occur
due to these configurations, neither in the JVM itself or code
that runs on the JVM. We aim to evaluate the impact that
differences in configurations has on test runtime, leading to
configurations that reduce that runtime for future testing.

Compiler autotuning generates the best combination of
compiler optimization flags for compiling a program [9]–
[13]. These techniques use machine learning approaches to
search the compiler optimization flag space and find the best
combination of flags to create a compiled binary that is
generally performant, no matter the input. Opentuner [64] is
a general autotuning framework that relies on user-specified
search space. Canales et al. proposed to represent JVM flags as
features in a feature model and use this model as an input for
a genetic algorithm [65]. Our work evaluates the effectiveness
of tuning JVM flags specifically for executing specific tests,
not all possible inputs. Despite the difference in goals, the two
directions both similarly have to generate combination of flags,

so we use recent compiler autotuning technique BOCA [13] in
our evaluation, finding that BOCA on its own is not effective
in this specific problem domain.

There have been other proposed work for speeding up
testing. Dong et al. proposed saving and reusing common state
generated by tests across commits, with the intuition that the
time to generate this state normally is more time-consuming
than loading the state [66]. Saff et al. proposed reducing test
runtime by converting expensive parts of test execution to
instead use mocks [67]. Stratis and Rajan proposed a way
to reorder tests as to minimize cache misses, thereby reducing
test runtime for future versions while still running all tests [68].
Our work has a similar intuition in optimizing based on a
current version of code and reusing the optimizations for future
versions, except we focus on configuring the JVM.

VII. CONCLUSIONS

We evaluate the effects of different JVM configurations
on test runtime. The intuition is that, given developers are
rerunning the same tests during regression testing, if there
are configurations that reduce test runtime on one commit,
reusing these configurations can similarly reduce test runtime
for future commits. Our evaluation involves generating JVM
configurations, which are combinations of JVM configuration
flags, with which to apply to the JVM where tests are run. We
use different strategies for generating configurations: random
generation, machine learning-based compiler autotuning, or
combinatorial testing. Our evaluation on 20 open-source Java
projects shows that different JVM configurations can lead to
reductions in test runtime by 11.90% on average (and up to
43.89%). We find that random generation tends to produce the
best configurations that reduce runtime the most, suggesting
existing work in compiler autotuning or combinatorial testing
are still lacking in this domain. We further evaluate the best
configurations across commits, finding a similar reduction in
runtime. We also find that using the same configurations even
when not running the same tests every time, i.e., running
on top of RTS that runs a subset of tests, can still provide
significant reduction in runtime. Future work should develop
techniques to generate configurations that significantly reduce
runtime more efficiently than random generation. These future
techniques should also be more effective, generating configu-
rations that can result in even greater reductions in runtime.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their comments and
feedback. This work is partially supported by the US National
Science Foundation under Grant Nos. CCF-2107291, CCF-
2217696, and CCF-2313027.

REFERENCES

[1] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Journal of Software Testing, Verification and
Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[2] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” in International Symposium
on Software Testing and Analysis, 2015, pp. 211–222.

11

[3] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, “The art of testing
less without sacrificing quality,” in International Conference on Software
Engineering, 2015, pp. 483–493.

[4] A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjørner, and J. Czerwonka,
“Optimizing test placement for module-level regression testing,” in
International Conference on Software Engineering, 2017, pp. 689–699.

[5] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco, “Taming Google-scale continuous testing,” in Interna-
tional Conference on Software Engineering, Software Engineering in
Practice, 2017, pp. 233–242.

[6] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive
test selection,” in International Conference on Software Engineering,
Software Engineering in Practice, 2019, pp. 91–100.

[7] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in International Symposium on Foundations of Software Engineering,
2014, pp. 235–245.

[8] “Java 8 documentation,” https://docs.oracle.com/javase/8/docs/technotes/
tools/unix/java.html, 2022.

[9] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano,
“A survey on compiler autotuning using machine learning,” ACM
Computing Surveys (CSUR), vol. 51, no. 5, pp. 1–42, 2018.

[10] A. H. Ashouri, G. Mariani, G. Palermo, and C. Silvano, “A bayesian
network approach for compiler auto-tuning for embedded processors,”
in 2014 IEEE 12th Symposium on Embedded Systems for Real-time
Multimedia (ESTIMedia). IEEE, 2014, pp. 90–97.

[11] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. O’Boyle,
J. Thomson, M. Toussaint, and C. K. Williams, “Using machine learning
to focus iterative optimization,” in International Symposium on Code
Generation and Optimization (CGO’06). IEEE, 2006, pp. 11–pp.

[12] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. O’Boyle, and
O. Temam, “Rapidly selecting good compiler optimizations using per-
formance counters,” in International Symposium on Code Generation
and Optimization (CGO’07). IEEE, 2007, pp. 185–197.

[13] J. Chen, N. Xu, P. Chen, and H. Zhang, “Efficient compiler autotuning
via bayesian optimization,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 1198–
1209.

[14] O. Legunsen, A. Shi, and D. Marinov, “STARTS: STAtic Regression
Test Selection,” in International Conference on Automated Software
Engineering (Tool Demonstrations Track), 2017, pp. 949–954.

[15] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
extensive study of static regression test selection in modern software
evolution,” in International Symposium on Foundations of Software
Engineering, 2016, pp. 583–594.

[16] M. Gligoric, L. Eloussi, and D. Marinov, “Ekstazi: Lightweight test
selection,” in International Conference on Software Engineering (Tool
Demonstrations Track), 2015, pp. 713–716.

[17] R. Kuhn, R. Kacker, and Y. Lei, Introduction to Combinatorial Testing.
Chapman and Hall, 2013.

[18] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys, vol. 43, no. 2, pp. 1–29, 2011.

[19] C. Luo, Q. Zhao, S. Cai, H. Zhang, and C. Hu, “SamplingCA: effective
and efficient sampling-based pairwise testing for highly configurable
software systems,” in European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2022, pp.
1185–1197.

[20] G. Rothermel and M. J. Harrold, “A safe, efficient regression test selec-
tion technique,” ACM Transactions on Software Engineering Methodol-
ogy, vol. 6, no. 2, pp. 173–210, 1997.

[21] L. Zhang, “Hybrid regression test selection,” in International Conference
on Software Engineering, 2018, pp. 199–209.

[22] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to
large software systems,” in International Symposium on Foundations
of Software Engineering, 2004, pp. 241–251.

[23] A. Shi, P. Zhao, and D. Marinov, “Understanding and improving regres-
sion test selection in continuous integration,” in International Symposium
on Software Reliability Engineering, 2019, pp. 228–238.

[24] A. Celik, M. Vasic, A. Milicevic, and M. Gligoric, “Regression test
selection across JVM boundaries,” in Symposium on the Foundations of
Software Engineering, 2017, pp. 809–820.

[25] A. Gyori, O. Legunsen, F. Hariri, and D. Marinov, “Evaluating regression
test selection opportunities in a very large open-source ecosystem,” in

International Symposium on Software Reliability Engineering, 2018, pp.
112–122.

[26] “Impact of JVM configurations on test runtime dataset,” https://sites.
google.com/view/jvm-impact-on-test-runtime, 2024.

[27] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32,
2001.

[28] Student, “The probable error of a mean,” Biometrika, pp. 1–25, 1908.
[29] “STARTS,” https://github.com/TestingResearchIllinois/starts, 2024.
[30] “GitHub Actions,” https://github.com/features/actions, 2024.
[31] “Travis-CI,” https://travis-ci.org, 2024.
[32] E. D. Ekelund and E. Engström, “Efficient regression testing based

on test history: An industrial evaluation,” in 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2015, pp.
449–457.

[33] J. Zhang, Y. Liu, M. Gligoric, O. Legunsen, and A. Shi, “Comparing and
combining analysis-based and learning-based regression test selection,”
in International Conference on Automation of Software Test, 2022, pp.
17–28.

[34] D. Elsner, F. Hauer, A. Pretschner, and S. Reimer, “Empirically eval-
uating readily available information for regression test optimization in
continuous integration,” in International Symposium on Software Testing
and Analysis, 2021, pp. 491–504.

[35] Y. Wu, Y. Chen, X. Xie, B. Yu, C. Fan, and L. Ma, “Regression
testing of massively multiplayer online role-playing games,” in 2020
IEEE international conference on software maintenance and evolution
(ICSME), 2020, pp. 692–696.

[36] C. Zhu, O. Legunsen, A. Shi, and M. Gligoric, “A framework for
checking regression test selection tools,” in International Conference
on Software Engineering, 2019, pp. 430–441.

[37] A. Shi, M. Hadzi-Tanovic, L. Zhang, D. Marinov, and O. Legunsen,
“Reflection-aware static regression test selection,” Proceedings of the
ACM on Programming Languages, vol. 3, no. OOPSLA, pp. 187:1–
187:29, 2019.

[38] T. Y. Chen and M. F. Lau, “A new heuristic for test suite reduction,”
Journal of Information and Software Technology, vol. 40, no. 5-6, pp.
347–354, 1998.

[39] ——, “A simulation study on some heuristics for test suite reduction,”
Journal of Information and Software Technology, vol. 40, no. 13, pp.
777–787, 1998.

[40] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong, “Empirical
studies of test-suite reduction,” Journal of Software Testing, Verification
and Reliability, vol. 12, no. 4, pp. 219–249, 2002.

[41] H. Zhong, L. Zhang, and H. Mei, “An experimental study of four typical
test suite reduction techniques,” Journal of Information and Software
Technology, vol. 50, no. 6, pp. 534–546, 2008.

[42] J. Black, E. Melachrinoudis, and D. Kaeli, “Bi-criteria models for
all-uses test suite reduction,” in International Conference on Software
Engineering, 2004, pp. 106–115.

[43] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel, “On-demand test
suite reduction,” in International Conference on Software Engineering,
2012, pp. 738–748.

[44] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritization
for modified condition/decision coverage,” in International Conference
on Software Maintenance, 2001, pp. 92–102.

[45] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “An empirical study
of JUnit test-suite reduction,” in International Symposium on Software
Reliability Engineering, 2011, pp. 170–179.

[46] A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov, “Evaluating
test-suite reduction in real software evolution,” in International Sympo-
sium on Software Testing and Analysis, 2018, pp. 84–94.

[47] J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, and L. Zhang,
“Optimizing test prioritization via test distribution analysis,” in European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2018, pp. 656–667.

[48] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Transactions on Software Engineering,
vol. 33, no. 4, pp. 225–237, 2007.

[49] T. Mattis and R. Hirschfeld, “Lightweight lexical test prioritization for
immediate feedback,” Programming Journal, vol. 4, pp. 12:1–12:32,
2020.

[50] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive random test
case prioritization,” in International Conference on Automated Software
Engineering, 2009, pp. 233–244.

12

[51] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang,
“How does regression test prioritization perform in real-world software
evolution?” in International Conference on Software Engineering, 2016,
pp. 535–546.

[52] Q. Luo, K. Moran, and D. Poshyvanyk, “A large-scale empirical com-
parison of static and dynamic test case prioritization techniques,” in
International Symposium on Foundations of Software Engineering, 2016,
pp. 559–570.

[53] Q. Peng, A. Shi, and L. Zhang, “Empirically revisiting and enhancing
IR-based test-case prioritization,” in International Symposium on Soft-
ware Testing and Analysis, 2020, pp. 324–336.

[54] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information
retrieval approach for regression test prioritization based on program
changes,” in International Conference on Software Engineering, 2015,
pp. 268–279.

[55] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the
gap between the total and additional test-case prioritization strategies,” in
International Conference on Software Engineering, 2013, pp. 192–201.

[56] A. Sharif, D. Marijan, and M. Liaaen, “Deeporder: Deep learning
for test case prioritization in continuous integration testing,” in 2021
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2021, pp. 525–534.

[57] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. Le Traon, “Bypassing the combinatorial explosion: Using similarity
to generate and prioritize t-wise test configurations for software product
lines,” IEEE Transactions on Software Engineering, vol. 40, no. 7, pp.
650–670, 2014.

[58] C. H. P. Kim, D. Marinov, S. Khurshid, D. Batory, S. Souto, P. Barros,
and M. D’Amorim, “SPLat: Lightweight dynamic analysis for reducing
combinatorics in testing configurable systems,” in European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2013, pp. 257–267.

[59] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A

comparison of 10 sampling algorithms for configurable systems,” in
International Conference on Software Engineering, 2016, pp. 643–654.

[60] M. Mukelabai, D. Nešić, S. Maro, T. Berger, and J.-P. Steghöfer,
“Tackling combinatorial explosion: A study of industrial needs and
practices for analyzing highly configurable systems,” in International
Conference on Automated Software Engineering, 2018, pp. 155–166.

[61] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-aware regression
testing: An empirical study of sampling and prioritization,” in Interna-
tional Symposium on Software Testing and Analysis, 2008, pp. 75–86.

[62] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and
S. Pasupathy, “Do not blame users for misconfigurations,” in Symposium
on Operating Systems Principles, 2013, pp. 244–259.

[63] R. Cheng, L. Zhang, D. Marinov, and T. Xu, “Test-case prioritization for
configuration testing,” in International Symposium on Software Testing
and Analysis, 2021, pp. 452–465.

[64] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible frame-
work for program autotuning,” in Proceedings of the 23rd international
conference on Parallel architectures and compilation, 2014, pp. 303–
316.

[65] F. Canales, G. Hecht, and A. Bergel, “Optimization of java virtual ma-
chine flags using feature model and genetic algorithm,” in Companion of
the ACM/SPEC International Conference on Performance Engineering,
2021, pp. 183–186.

[66] J. Dong, Y. Lou, and D. Hao, “SRRTA: Regression testing acceleration
via state reuse,” in International Conference on Automated Software
Engineering, 2021, pp. 1244–1248.

[67] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic test
factoring for Java,” in International Conference on Automated Software
Engineering, 2005, pp. 114–123.

[68] P. Stratis and A. Rajan, “Speeding up test execution with increased
cache locality,” Journal of Software Testing, Verification and Reliability,
vol. 28, no. 5, pp. 1–17, 2018.

13

