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Abstract—A major challenge in regression testing practice is
the presence of flaky tests, which non-deterministically pass or
fail when run on the same code. Previous research identified mul-
tiple categories of flaky tests. Prior research has also developed
techniques for automatically detecting which tests are flaky or
categorizing flaky tests, but these techniques generally involve
repeatedly rerunning tests in various ways, making them costly
to use. Although several recent approaches have utilized large-
language models (LLMs) to predicting which tests are flaky or
predicting flaky-test categories without needing to rerun tests,
they are costly to use due to relying on a large neural network
to perform feature extraction and prediction.

We propose FlakyQ to improve the effectiveness of LLM-based
flaky-test prediction by quantizing LLLM’s weights. The quantized
LLM can extract features from test code more efficiently. To
make up for loss in prediction performance due to quantization,
we further train a traditional ML classifier (e.g., a random
forest) to learn from the quantized LLM-extracted features and
do the same prediction. The final model has similar prediction
performance while running faster than the non-quantized LLM.

Our evaluation finds that FlakyQ classifiers consistently im-
proves prediction time over the non-quantized LLM classifier,
saving 25.4% in prediction time over all tests, along with a 48.4%
reduction in memory usage. Furthermore, prediction perfor-
mance is equal or better than the non-quantized LLM classifier.

I. INTRODUCTION

Regression testing is the common practice of rerunning tests
after every change to check whether their changes introduced
any bugs [1]-[3], but suffers from the presence of flaky tests.
Flaky tests are tests that non-deterministically pass or fail
when run on the same code [4]. If there are flaky tests, a
developer can no longer trust that the test failures during
regression testing are due to bugs introduced in code changes.
Furthermore, flaky tests are prevalent in open-source software
and in industry, with researchers at Facebook even suggesting
that everyone should “assume all tests are flaky” [5].

There are many reasons for why tests are flaky. In a
large dataset of known flaky tests [6], the flaky tests are
categorized based on techniques that researchers previously
developed for detecting these flaky tests automatically [7]-
[10]: order-dependent (OD), non-idempotent-outcome (NIO),
implementation-dependent (ID), non-deterministic order-
dependent (NDOD), non-order-dependent (NOD), and
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unknown dependency (UD). The way researchers previously
detected and categorized flaky tests generally involve
repeatedly rerunning the tests in various ways [7], [8], [11],
[12], which makes them costly to use.

Recent work has focused on predicting flaky tests using
machine learning (ML), which does not require rerunning the
tests. Alshammari et al. proposed FlakeFlagger, an ML-based
approach to detect flaky tests by predicting whether a test is
flaky based on features such as test-code smells, historical
runtime information, or features based on running the tests
once, without continuously rerunning tests [13]. Fatima et al.
proposed Flakify to similarly predict flaky tests, but does so
using large-language models (LLMs) and predicting based
solely on the test code itself [14]. Flakify involves fine-tuning
a LLM to extract features from test-code tokens (resulting in
a feature vector) that it then passes on to a neural network to
predict whether a test is flaky or not. Fatima et al. found that
Flakify, by using a LLM, performs better at predicting flaky
tests than FlakeFlagger. Akli et al. later proposed FlakyCat to
predict a flaky-test category, also based on LLMs as well as
with few-shot learning [15]. While we see that this recent trend
of using LLMs provides benefits over traditional ML classifiers
in terms of prediction performance as well as not requiring to
rerun tests like dynamic analyses-based techniques, LLMs tend
to be large neural networks, requiring GPUs to both fine-tune
and run prediction. Running such LLM-based classifiers can
be costly in terms of both runtime and memory usage.

We propose FlakyQ, an approach to train more efficient
LLM-based classifiers that predict flaky tests via quantization.
Quantization for a LLM involves converting the weights in the
LLM from a higher precision data type, such as float, into
a lower precision data type, such as int8 [16]. A quantized
LLM can extract features from test code and perform pre-
diction faster. However, a quantized LLM generally suffers
from a loss in prediction capability compared to the non-
quantized LLM. We propose to overcome this limitation by
additionally training a traditional ML classifier (e.g., a random
forest model [17]) to learn from the features (in the form of
a feature vector) that the quantized LLM extracts from test
code and then performing the same prediction task (either
predicting whether a test is flaky or predicting the flaky-
test category). The intuition is that a traditional ML classifier



that uses these LLM-extracted features can enhance prediction
accuracy. In the final model, which pairs the quantized LLM
for feature extraction with a classifier for predictions, any
accuracy loss due to quantization is rectified, achieving the
same accuracy as a non-quantized LLM used for similar
predictions. Furthermore, a traditional ML classifier tends to
run much faster, requiring less resources than a neural network.
As such, combining both the traditional ML classifier and
the quantized LLM can result in faster prediction time while
achieving higher prediction accuracy.

We evaluate FlakyQ on large datasets of tests that contain
both flaky and non-flaky tests, and flaky tests that are labeled
with flaky-test categories, collected by prior researchers [6],
[15]. We fine-tune a pre-trained CodeBERT LLM on this
dataset to either predict whether a test is flaky or not, or to
predict the correct flaky-test category for a known flaky test.
We later quantize the resulting fine-tuned LLM, converting
the float data-type weights into int8 data-type weights.
We then train five different traditional ML classifiers using
the features extracted with the quantized LLM to perform the
same type of predictions. We compare the performance of the
classifiers created using our approach against the original, non-
quantized LLM classifier in terms of precision/recall/F1-score
as well as time to perform the prediction.

We find that the FlakyQ classifiers can predict with similar
precision/recall/F1-scores as the original, non-quantized LLM,
sometimes even surpassing it on these metrics. Furthermore,
the FlakyQ classifiers predict faster, e.g., dropping from 100.2
seconds down to 64.7 seconds to predict flaky-test categories
across all labeled flaky tests in our dataset, a 35.4% reduction.
We also find that the classifier uses 48.4% less memory.
The comparison against training the traditional ML classifiers
using non-LLM static code features (using bag-of-words or
vocabulary-based features extracted from test code) shows that
the traditional ML classifiers perform much worse using these
other features, suggesting the need to use LLMs to achieve
good prediction results. We also perform the same evaluation
on different datasets of categorized flaky tests, finding similar
trends between datasets, reinforcing our findings that quanti-
zation can provide prediction runtime improvements while any
loss in accuracy can be masked through additional use of a
traditional ML classifier.

This paper makes the following contributions:

o We propose quantizing LLMs to improve the runtime and
computational resources needed to predict flaky tests and
flaky-test categories, allowing them to run effectively in
CPUs. Further, we recover losses in accuracy by addi-
tionally training traditional ML classifiers to learn from
LLM-extracted features to perform the same predictions.

e We implement our approach and evaluate on large
datasets of labeled flaky tests. We compare the classifiers
trained using our approach against the non-quantized
LLM and traditional ML classifiers trained using bag-
of-words and vocabulary-based features, comparing the
classifiers in terms of both prediction accuracy metrics
and prediction runtime.

o We find that using a quantized LLM to extract features
speeds up prediction time, while the additional traditional
ML classifier can rectify any prediction loss. Further,
classifiers trained using LLM-extracted features perform
much better than using bag-of-words or vocabulary-based
features, showing the necessity to use LLMs to help with
prediction tasks. Our experiment scripts and results can
be found at https://sites.google.com/view/flakyq.

II. BACKGROUND
A. Flaky Tests

Flaky tests are tests that can nondeterministically pass and
fail when run on the same version of code [4], [18]. These
tests can mislead developers concerning the correctness of
their code, and they are prevalent both in open-source software
and in industry [5], [19], [20]. Prior work has focused on
proactively detecting which tests are flaky within a test suite,
such as through machine learning techniques [13], [14] or
rerunning the tests in various ways, resulting in a dataset of
known flaky tests known as IDoFT [6].

The flaky tests in the IDoFT dataset are also categorized
based on the techniques used to detect them. Shi et al.
proposed NonDex to detect tests that make assumptions on
methods or data structures with nondeterministic specifica-
tions, e.g., assuming unordered sets are always iterated over
in the same order due to its implementation [8]; these tests
are marked as implementation-dependent (ID). Lam et al.
proposed iDFlakies to detect tests whose outcomes depend
on the order in which they are run (passing in one order
but failing in another) [7]; these tests are marked as order-
dependent (OD). iDFlakies detects flaky tests by rerunning
them in different test orders, but some of the detected flaky
tests are not actually OD, i.e., the tests do not consistently
fail in one order and pass in another; they categorized these
tests as non-order-dependent (NOD). Lam et al. later found
that some of these tests are actually order-dependent, but
not deterministically, i.e., they fail more often in a specific
order, but not always [9]; they then marked such tests as non-
deterministic order-dependent (NDOD). Wei et al. studied non-
idempotent-outcome tests, which are tests that fail when run
twice in the same process [10]. They marked such tests as
non-idempotent-outcome (NIO). Finally, remaining flaky tests
that were found through reruns, yet difficult to understand or
reproduce, are marked as unknown dependency (UD).

Luo et al. previously categorized flaky tests in a different
manner, based on the root causes for flakiness based on their
inspection of fixed flaky tests in open-source projects [4].
Their categories include Async wait, Concurrency, Test order
dependency, Time, and Unordered collections. Barbosa et al.
inspected known flaky tests and manually classified them
among these categories [21]. Akli et al. later refined this
labeled dataset of flaky tests for their own evaluation purposes.
Researchers developed techniques for debugging/reproducing
flaky-test failures [22], [23] or repairing [24]-[28] flaky tests,
but only for specific categories of flaky tests; knowing the
category a priori can be useful for guiding which tools to use.



B. Machine Learning Classifiers and Large-Language Models

Traditional machine learning (ML) algorithms can be used
to train classifiers or models that categorize some input data
into a discrete set of classes [29]. In general, they take as
input a training set of labeled data, training a classifier that
can parse similar data to predict a label for that data. There
are a wide variety of different ML algorithms readily available
in libraries such as Scikit-learn [30]. Support Vector Machine
(SVM) creates hyperplanes to separate instances of different
classes [29], [31], [32]. Random Forest (RF) partitions the fea-
ture space into regions, assigning each region to a class [17].
K Nearest Neigbour (KNN) classifies instances based on
their similarity to other instances, as measured by distance
in the feature space [33]. Multi Layer Perceptron (MLP) is
a type of artificial neural network that uses layers of nodes
with activation functions to classify instances [34]. Logistic
Regression (LR) is a probabilistic classifier that generates
predictions of class membership probabilities, modeling the
log-odds of the probabilities in a linear fashion [35].

Large-language models (LLMs) are neural networks trained
on large quantities of text data. There are pre-trained LLMs
that are specifically trained on large amounts of text from
source code, e.g., CodeBERT is a LLM pre-trained on over six
million lines of code across six programming languages [36],
[37]. Given that these LLMs are trained on massive amounts
of code data, they can provide a means to parse and process
source code as well as general tasks such as predicting the next
tokens, based on the large amounts of data they were already
trained on. It is common to fine-tune a LLM to focus on a
specific prediction task, training on labeled data to construct a
better model geared towards the desired task. However, given
that LLMs are built on top of neural networks, they can be
expensive to train and to use for prediction, with both often
requiring GPU resources.

Quantization is the process of reducing the precision
of model parameters to save on memory and computation
time [16], [38], [39]. For example, one can convert the data-
types of weights in a model from float to int8. By using
this less precise data-type, the model can run faster without
using as much memory. However, the reduced computational
load comes at the cost of loss in prediction accuracy. There has
been much work in apply quantization for different models,
including for LLMs, trying to balance between computation
cost and prediction accuracy.

ITI. FLAKYQ

We propose FlakyQ, an approach for creating an efficient
LLM-based classifier that can predict whether a test is flaky
or predict the flaky-test category for a known flaky test by just
parsing the test-code body, with the goal that it can be run in a
CPU environment. The intuition is that we can make the LLM
run more efficiently through quantization. While quantization
can make a model that runs faster and consumes less memory,
the model may have less accurate predictions. FlakyQ further
trains of a traditional ML classifier to rectify prediction loss.
This traditional ML classifier is trained to take as input the

features extracted using the quantized LLM to perform the
same prediction task.

We first fine-tune a pre-trained LLM using a given dataset
of labeled tests so it can learn how to extract features from test
code for use in a specific prediction task. We specifically fine-
tune the CodeBERT model [36], [37]. We follow a similar
process to fine-tune the LLM as Flakify [14], with some
adjustments. Figure 1 shows our overall fine-tuning process.

1) Data Processing: Given a labeled dataset for training,
we first partition it into two distinct sets of training and
validation (Figure 1, @). We have a validation set to evaluate
validation loss as we fine-tune the model across several epochs.
We make this division early as to ensure no overlap or
mixing between the sets. Each of these sets contains the tests’
source code along with their respective labels based on the
prediction task (flaky or non-flaky when predicting for flaky
tests, and flaky-test category when predicting for category).
We utilize the tokenizer from the pre-trained CodeBERT
model to tokenize the code from each test. After obtaining
these tokens, we convert these tokens into tensors (multi-
dimensional arrays). We create a sequence tensor and an
attention mask for each test. A sequence tensor contains
the numerical representations of the token, and the attention
mask indicates which positions in the corresponding sequence
tensor should get importance and which should be ignored.
It is noteworthy that during tokenization if the token size
becomes less than our defined token size, then the model
adds padding to keep the same token length for all the test
code. If a token is padded, then the corresponding index value
in the attention mask is set to O, otherwise it is 1. These
tensors therefore represent the input test-code data that are the
inputs for the model. By default, CodeBERT accommodates
up to 512 tokens, truncating any additional tokens. From our
evaluation, we find that 13% of tests contain more than 512
tokens. Indeed, Fatima et al. similarly noted they encountered
this limitation when developing Flakify to predict flaky tests
when fine-tuning a CodeBERT model [14]. To address this
limitation, we segment the complete token list into smaller
chunks for processing (Figure 1, @), where each chunk has
512 tokens (padded if less than that many tokens).

2) Fine-Tuning: For each chunk set, we utilize one Code-
BERT model, as a single CodeBERT model can process a
maximum of 512 tokens simultaneously. Therefore, we employ
as many models as there are chunks. After creating chunks of
tokens taken from test code, we feed them into the pre-trained
CodeBERT models, which convert them into vectors of length
768, a CodeBERT design choice [37]. We concatenate all
vectors together to create a new 768-length vector (Figure 1,
©). To further refine our model, we introduce two additional
neural network layers. The initial layer, a fully connected
one, takes the 768-length vector and outputs a feature vector
of length 512. This layer integrates a Rectified Linear Unit
(ReLU) activation function [40], followed by a dropout layer
set at a rate of 0.2.

The subsequent fully connected prediction layer uses the
512-length vector output of the preceding layer as its input.
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prediction task. For instance, in the context of predicting
whether a test is flaky, there are two output units: “flaky” and
“non-flaky”. In the context of predicting a flaky-test category,
the output units match the number of categories, with each
unit signifying the likelihood of a test fitting that particular
category. The final step involves applying the log-softmax
function [41] to generate the logits [42] corresponding to these
categories. Using these logits, we compute the training loss
with a class-weighted cross-entropy loss function. The class
weights are determined by the number of samples in each
category, addressing the issue of class imbalance.

We continue this process for 20 epochs. In each epoch,
we train the model using the training set and validate on
the validation set determined previously (Section III-1). We
measure both the training loss and validation loss of the model.
We give the model-weights of this new model as input for the
next epoch to consult as it trains the model again. During these
20 epochs, we use the AdamW optimizer [43] to optimize the
training loss. After 20 epochs, we save the model that resulted
in the lowest validation loss.

3) Quantization: After fine-tuning a CodeBERT model, we
dynamically quantize this model [44], creating a quantized
LLM (Figure 1, @). This dynamic quantization process con-
verts the float model weights to type int8, offering the
distinct advantage of eliminating the need for model retrain-
ing, unlike static quantization [45]. By converting the model
weights from float to int8, and specifically targeting the
linear layers of the CodeBERT model that extracts features, we
can improve feature-extraction time, particularly as it requires
smaller data transfers from memory and runs on hardware
designed for int8 operations.

4) Rectifying Prediction: While we can continue to use
the same prediction head created when fine-tuning the LLM
to now predict using the features extracted by the quantized
LLM (Figure 1, @), the prediction may now no longer be as
effective due to the losses in model weight precision. To rectify
any prediction accuracy loss, we additionally train a traditional
ML classifier (e.g., random forest) to perform prediction based
on the features extracted using the quantized LLM.

We train this traditional ML classifier normally to predict
whether a test is flaky or to predict a flaky-test category using
the entire training dataset. The inputs to the classifiers are
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Fig. 2. FlakyQ classifier workflow.
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the 768-length vectors outputted by the quantized, fine-tuned
CodeBERT model. We finally output a classifier, that ulti-
mately uses the quantized LLM to extract features and leverage
the traditional ML classifier to do the actual prediction.

Figure 2 illustrates the flow of the final outputted classifiers
(Figure 1, @), showcasing how a developer would use one of
these classifiers. The input is test-code data, which is parsed
through a tokenizer to create tokens that are then converted
into tensors. This tensor is fed through a quantized CodeBERT
model, which extracts features from the tensor and outputs
another vector that is used as input to a trained traditional ML
classifier to perform the prediction.

IV. EXPERIMENTAL SETUP

We address the following research questions:

e RQI1: How accurate are FlakyQ classifiers at predicting

flaky tests and flaky-test categories?

¢ RQ2: How much time and memory is saved by using

FlakyQ classifiers?
e RQ3: How effective are the classifiers when evaluated in
a per-project evaluation?

o RQ4: How effective are the classifiers when trained/eval-

uated on different datasets?

We address RQ1 to evaluate the loss in prediction accuracy
due to quantization as well as how well traditional ML
classifiers can rectify that loss. We address RQ2 to compare
the amount of time and memory needed by each classifier, i.e.,
how much time can be saved by using a quantized LLM. A
developer may need to run the classifier many times on future
code and tests, so a more efficient prediction time can reduce
their development costs. We address RQ3 to check whether
the prediction results are also applicable when we train on
tests from some open-source projects but predict on tests from
entirely different projects. This evaluation is focused on a real-
world application of these classifiers, namely can a developer
effectively reuse the classifiers trained on some other projects
for use in their own project that was not part of the training.




TABLE I
ALL CATEGORIES ACROSS TWO DATASETS

Category-Name | #Tests
IDoFT Flaky-vs-NonFlaky

Flaky 3195
NonFlaky 618

Total | 3813

IDoFT Flaky Test Category

NDOD 84
NOD 226
oD 932
NIO 196
ID 1617
UD 140

Total | 3195

FlakyCat

Async wait (Asyn.) 125
Concurrency (Conc.) 48
Time 42
Test Order Dependency (OD) 103
Unordered Collections (UC) 51

Total | 369

Finally, we address RQ4 to see whether our findings also hold
on some other dataset of flaky tests.

A. Dataset

We evaluate on a dataset of labeled flaky tests. We start with
the dataset that Fatima et al. used to evaluate Flakify [14].
Their dataset includes both flaky and non-flaky tests. We need
flaky tests that are also categorized and labeled, given that
one of our prediction tasks is to predict a flaky-test category
for a known flaky test. A large part of the flaky tests from
Fatima et al.’s dataset are taken from IDoFT [6], a public
dataset of known flaky tests where each flaky test is labeled
with a category based on a prior technique used specifi-
cally to detect the flaky test [7]-[10]: order-dependent (OD),
non-idempotent-outcome (NIO), implementation-dependent
(ID), non-deterministic order-dependent (NDOD), non-order-
dependent (NOD), and unknown dependency (UD). Ulti-
mately we use a total of 3813 tests from Fatima et al., where
3195 of them are flaky tests and the rest are non-flaky tests.
The 3195 flaky tests are also labeled using categories taken
from IDoFT. Table I shows the breakdown of the number of
flaky tests among each of these categories within the dataset.

For the sake of RQ4, we also use a different labeled set
of flaky tests provided by Akli et al. for their work on
FlakyCat [15]. FlakyCat is a technique for categorizing flaky
tests, where their categories are based on flaky-test root causes
defined by past studies [4], [18]: Async wait, Test order
dependency, Unordered collections, Concurrency, and Time.
Ultimately, we use a total of 369 labeled flaky tests from this
dataset. Table I also shows the breakdown of the number of
flaky tests among each of these categories within the dataset.

B. Trained Classifiers

We use FlakyQ to train five different classifiers, each using a
different traditional ML classifier that uses the quantized, fine-
tuned LLM’s extracted features to predict flaky tests. The five
traditional ML classifiers we use are KNN, MLP, RF, SVM,
and LR (Section II-B).

For comparison purposes, we also evaluate the neural net-
work classifier that uses the fine-tuned LLM for extracting fea-
tures. This neural network classifier is essentially Flakify [14],
except we address its token-length limitation (Section III-1).
Additionally, we also train a version of it that can predict the
flaky-test category. We refer to such a classifier as Flakify++.
We also evaluate this neural network classifier that uses the
quantized LLM to extract features, as a means to show whether
the additional traditional ML classifiers trained on top of the
quantized LLM can rectify any loss in prediction accuracy.
We refer to such a classifier as Q-Flakify++.

In addition, we also evaluate the traditional ML classifiers
using non-LLM features The goal is to see whether the
traditional ML classifiers’ prediction results are mainly due
to using the LLM-extracted features or whether any form of
representing test code is sufficient to create a good classifier.
Here, we use bag-of-words and vocabulary-based features.

A bag-of-words is a vector that represents the frequency of
word appearance in text while also ignoring any information
concerning the order of words that appear. We use a CountVec-
torizer from the Scikit-learn library [30] to transform the test
source code into a token count vector, and we use this vector
as the extracted features for training the ML classifier.

We follow a similar approach as Pinto et al. for extracting
features in a vocabulary-based approach [46]. We start by
tokenizing the code using a word tokenizer [47]. We then apply
stemming and calculate the appearance of each token, resulting
in a token-occurrence vector for each test. We use this vector
as the extracted features for training the ML classifier.

C. Cross Validation

We use a 10-fold cross validation to evaluate the effective-
ness of the different classifiers. We construct 10 folds, where
in each fold we divide the dataset such that 90% of the tests
are used for the training set and the remaining 10% are used
for test set. For each fold, we train a classifier on the training
set of that fold and then evaluate on the test set (recall that
this training set of each fold gets further divided into training
and validation set when fine-tuning the model across many
epochs, Section III-1). We also use the exact same training set
and validation set on each fold for each classifier as to more
fairly compare them to one another.

For the task of predicting whether a test is flaky or not, we
consider the classifier predicting a test to be flaky as a positive
while predicting it as non-flaky to be a negative, allowing us
to compute the number of true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN). We then
compute the precision of the classifier on the data in a fold as

TP __ We compute the recall of the classifier as T Ir

TP+FP* P+FN*

The Fl-score is then computed as 2 x LrecisionxfRecall yye
Precision+Recall



compute the averages of these three values across all 10 folds
and report these results for answering RQI.

For the task of predicting the flaky-test category, we evaluate
on the known flaky tests with labeled categories, and we
separately compute precision, recall, and Fl-score for each
category, where a positive is that the classifier categorizes
the test within the category and a negative as otherwise. We
similarly compute an average of each value across all 10 folds
per category. Furthermore, for each classifier, we compute
the average of the precision, recall, and Fl-scores across all
categories, resulting in an average for all three values per
classifier for comparison purposes.

D. Per-Project Evaluation

To answer RQ3, we break apart our dataset based on
the projects the tests belong to. Like the per-project evalu-
ation methodology proposed by Fatima et al. [14], instead
of performing a 10-fold cross validation for each classifier,
we instead reserve the tests from one project for use as the
test set while using the tests from all the other projects for
training. The goal is to check how good the classifiers are
at predicting flakiness or categories for tests in projects not
seen during training. Some projects have very few tests in
our dataset, meaning validation on just those few tests can
result in misleading results. As such, we purposefully only
choose projects that have at least 30 flaky tests, resulting in
27 projects. As such, for each classifier, we train and validate
27 times (essentially performing 27-fold validation), and we
compute the precision, recall, and F1-score that each classifier
achieves when validating on each individual project.

E. Time Measurements

For each classifier, we measure the time required to extract
features from the quantized model using the testing data.
Subsequently, we calculate the time each classifier needs to
predict labels for all tests within each fold, then average these
prediction times over all folds. These times together form the
overall prediction time. The results, including the training and
quantization times, are detailed in RQ2.

F. Hardware Environment

We fine-tune the CodeBERT model using a Linux machine
equipped with a single NVIDIA RTX A5000 GPU and 125GB
RAM. We use CUDA version 12.0 with the GPU. We quantize
the LLM using Pytorch’s built-in quantizer, which can only be
run on a CPU. When we train the traditional ML classifier,
we run in a CPU environment without a GPU, namely on
a 64-bit Ubuntu 20.04.4 desktop with an Intel(R) Xeon(R)
W-2245 CPU @3.90GHz. We use the same environment for
training the traditional ML classifier when using both LLM-
extracted features, bag-of-words features, and vocabulary-
based features. When we finally measure prediction time per
classifier, we run the classifier (including feature-extraction
using the LLM) in the same CPU environment.

V. EVALUATION
A. RQI: Predicting Flaky Tests

Table II presents how effective the classifiers are at predict-
ing flaky tests. Each row corresponds to a different classifier,
and each classifier trained using FlakyQ includes the name
of the traditional ML classifier. Columns under “Flaky-vs-
NonFlaky” show the results of the classifiers trained to predict
whether a test is flaky, and columns under “Flaky-Test Cat-
egory” show the results of the classifiers trained to predict
a flaky-test category. The columns “P”, “R”, and “F1” show
precision, recall, and Fl-score, respectively.

Overall, the neural network classifier Flakify++ has high
precision, recall, and Fl-score for all prediction tasks, with
on average 93.9 Fl-score to predict whether a test is flaky
and on average 91.2 Fl-score to predict a flaky-test category.
Using the quantized LLLM decreases the classifier’s prediction
effectiveness, with F1-score dropping to 93.0 when predicting
whether a test is flaky or not and Fl-score dropping to 84.3
when predicting the flaky-test category.

However, the classifiers created using FlakyQ rectify the
loss that comes from quantization. All FlakyQ classifiers have
average Fl-scores that are higher than Q-Flakify++, and they
can even be higher than those achieved by Flakify++, which
does not use the quantized model. For example, FlakyQ_MLP
achieves the highest average Fl-score for predicting whether
a test is flaky, at 94.4, while FlakyQ_LR achieves the highest
average Fl-score for predicting flaky-test categories, at 93.3.

We also show in Table III the average Fl-scores across
all folds for each classifier, but broken down across the six
flaky-test categories. Different classifiers are better or worse at
predicting different flaky-test categories. A priori, we cannot
know which classifier would be more effective for specific
categories. However, we see the same trend overall, where
Q-Flakify++, due to using a quantized LLM, is worse at
predictions for almost all categories compared to the non-
quantized version in Flakify++. The FlakyQ classifiers can
result in Fl-scores that rectify that loss, with comparable
(often higher) Fl-scores than Flakify++.

Table IV shows the same prediction results as in Table II, but
for the traditional ML classifiers trained using bag-of-words
and vocabulary-based features. In comparison to their corre-
sponding versions that use the quantized LLM, the precision,
recall, and F1-scores are all lower. While F1-scores are not
lower by much in the case of predicting whether a test is
flaky or not, the Fl-score is especially low when predicting
the flaky-test category. For example, KNN, when trained using
LLM features, can achieve an average Fl-score of 92.1 for
predicting flaky-test categories, but that F1-score drops to 69.1
when using vocabulary-based features. Most other classifiers’
F1-scores drop around 10 percentage points when predicting
flaky-test categories using such features. Overall, these results
highlight how useful LLM-extracted features are towards these
prediction tasks, where the traditional ML classifiers can now
predict at the same level as the neural network classifier if
they are trained to use the same LLM-extracted features.



TABLE II
RESULTS OF CLASSIFIERS PREDICTING FLAKY TESTS.

Flaky-vs-NonFlaky Flaky-Test Category

Precision | Recall | Fl-score | PT (sec) Precision | Recall | Fl-score | PT (sec)
Classifier P) ®) (F1) P) (R) (F1)
Flakify++ 94.1 93.9 93.9 123.0 92.6 90.8 91.2 100.2
Q-Flakify++ 93.0 93.2 93.0 109.6 88.4 83.9 84.3 96.5
FlakyQ_KNN 93.4 93.6 93.5 78.7 92.4 92.0 92.1 66.9
FlakyQ_MLP 94.4 94.5 94.4 78.3 92.9 92.6 92.6 64.2
FlakyQ_RF 93.2 93.2 93.1 75.9 93.0 92.8 92.6 64.7
FlakyQ_SVM 93.6 93.6 93.5 76.0 93.3 93.1 93.0 65.2
FlakyQ_LR 93.6 93.8 93.6 78.7 93.5 93.3 93.3 65.8

TABLE III We observe that the times needed for training all classifiers

RESULTS OF CLASSIFIERS FOR FLAKY-TEST CATEGORY (THIS TABLE
CONTAINS F1-SCORE).

Classifier | NDOD | NOD | OD | NIO | ID | UD
Flakify++ 849 | 719 | 91.8 | 94.6 | 92.4 | 814
Q-Flakify++ 86.7 | 645 | 847 | 867 | 91.7 | 72.9
FlakyQ KNN | 859 | 72.6 | 922 | 958 | 925 | 82.0
FlakyQ_MLP 86.5 | 75.1 | 929 | 962 | 91.9 | 80.6
FlakyQ_RF 878 | 752 | 929 | 962 | 91.6 | 82.6
FlakyQ_SVM | 851 | 77.9 | 936 | 966 | 91.0 | 81.9
FlakyQ_LR 86.1 | 774 | 933 | 968 | 92.1 | 82.3
TABLE IV

RESULTS OF PREDICTING TEST FLAKINESS USING BAG-OF-WORDS AND
VOCABULARY-BASED FEATURES.

Flaky-vs-NonFlaky Flaky-Test Category

Classifier P ‘ R ‘ Fl1 ‘ PT (sec) P ‘ R ‘ Fl1 ‘ PT (sec)
Bag-Of-Words Features
KNN 858 | 95.8 | 90.5 1.7 || 74.6 | 733 | 73.0 0.6
MLP 89.4 | 90.8 | 90.1 0.3 859 | 853 | 853 0.2
RF 90.0 | 938 | 91.8 0.6 || 844 | 832 | 823 0.4
SVM 928 | 91.6 | 92.2 3.1 825 | 828 | 824 4.6
LR 91.2 | 92.7 | 92.0 02 || 83.8 | 84.1 | 83.6 0.2
Vocabulary Features
KNN 853 | 96.3 | 90.4 3.6 || 70.5 | 69.5 | 69.1 4.1
MLP 929 | 79.0 | 854 2.5 859 | 85.7 | 854 33
RF 89.7 | 91.5 | 90.6 2.5 83.6 | 823 | 8I.1 34
SVM 89.5 | 934 | 914 2.6 || 83.0 | 832 | 829 9.0
LR 932 | 91.5 | 92.3 46 || 845 | 84.8 | 84.2 32

B. RQ2: Time and Memory

Table II also shows for each classifier the average prediction
time (column “PT (sec)”), namely the number of seconds
needed for the classifier to run prediction on all tests in a
fold. Note that this prediction time includes the time to extract
features as well as the time to do the actual prediction using
the extracted features as input.

Flakify++ takes the most time to do prediction, on average
needing 123.0 seconds for predicting whether a test is flaky
and 100.2 for predicting flaky-test categories. By using a
quantized LLM, the time drops down to 109.6 seconds and
96.5 seconds, respectively. The prediction time drops even
further for the FlakyQ classifiers, which can indicate how the
final prediction can be sped up when using a traditional ML
classifier over the neural network.

are similar to each other, needing around 2263.6 seconds for
training, the bulk of which is fine-tuning the LLM. Quanti-
zation takes an additional 3.3 seconds. We also find that the
additional time needed to train the traditional ML classifier
on top of the quantized LLM is rather small compared to
the rest of the time. The training time for these traditional
ML classifiers is quite short, with durations ranging from as
little as 0.0034 seconds (for KNN) up to 20.5 seconds (for
RF). While training time is rather large, note that training a
classifier needs to happen just once, and a developer can reuse
the classifier for predicting flaky tests in other projects.

Table IV also shows the prediction time for the classifiers
trained using bag-of-words and vocabulary-based features. The
prediction time is much faster, due to not using a LLM to
extract features. While these classifiers take much less time
to run, given that they are not as effective at prediction,
a developer would have to consider whether this trade-off
between prediction accuracy and prediction time is worth it
for their specific development process.

Overall, these results showcase the efficiency of FlakyQ
classifiers, given that they can achieve the similar prediction
accuracy as Flakify++ while running much faster. For ease
of presentation, we only show results for classifiers that use
LLM-extracted features for later RQs.

Futhermore, we find that using the quantized LLM also pro-
vides reduced memory usage. Our results show that classifiers
that use the quantized LLM use 48.4% less memory for all
prediction tasks. This large reduction in memory usage can be
especially beneficial for larger-scale applications.

C. RQ3: Per-Project Evaluation

Table V shows the results of the per-project evaluation for
the task of predicting whether a test is flaky, for the 27 projects
that have at least 30 flaky tests. Each row shows the results for
each project. The column “Support” shows the number of tests
on which we run the classifier. Columns “P”, “R”, “F1”, and
“PT (sec)” show the precision, recall, F1-score, and prediction
time, respectively, of each classifier for the project. For space
reasons, we only show the results for Flakify++, Q-Flakify++,
and FlakyQ_RF as a representative of the FlakyQ classifiers.
We show in the final row the summary of the results, namely
the total number of tests on which we run the classifiers, the



TABLE V
PER-PROJECT ACCURACY OF FLAKY VS NON-FLAKY (EACH PROJECT HAVE AT LEAST 30 FLAKY TESTS).

Flakify-++ Q-Flakify++ FlakyQ_RF

Project ‘ Support ‘ ‘ P | R | F1 | PT (sec) H P | R | F1 | PT (sec) ‘ ‘ P | R | Fl | PT (sec)
Chronicle-Wire 63 93.0 87.0 90.0 22.6 94.0 95.0 95.0 20.2 94.0 94.0 94.0 17.6
DataflowTemplates 39 100.0 100.0 100.0 13.9 100.0 100.0 100.0 12.8 100.0 100.0 100.0 79
Java-WebSocket 54 100.0 100.0 100.0 18.8 100.0 | 100.0 100.0 16.9 100.0 100.0 100.0 10.8
Mapper 76 97.0 99.0 98.0 26.3 97.0 99.0 98.0 23.8 97.0 99.0 98.0 15.4
admiral 113 99.0 99.0 99.0 38.6 99.0 99.0 99.0 33.6 99.0 99.0 99.0 22.0
adyen-java-api-library 89 68.0 54.0 43.0 30.6 55.0 54.0 52.0 27.3 64.0 54.0 45.0 18.2
biojava 52 100.0 100.0 100.0 18.2 100.0 100.0 100.0 16.3 96.0 98.0 97.0 10.7
dubbo 186 87.0 88.0 87.0 61.7 84.0 88.0 86.0 554 84.0 91.0 88.0 37.5
esper 38 100.0 100.0 100.0 134 100.0 100.0 100.0 12.9 100.0 100.0 100.0 7.6
fastjson 109 92.0 91.0 91.0 37.1 93.0 93.0 93.0 34.7 93.0 93.0 93.0 22.1
hadoop 149 99.0 99.0 99.0 50.3 100.0 100.0 100.0 45.7 100.0 100.0 100.0 30.5
hbase 52 99.0 98.0 98.0 18.2 99.0 98.0 98.0 17.3 99.0 98.0 98.0 10.7
hive 42 99.0 98.0 98.0 14.9 99.0 98.0 98.0 14.1 99.0 98.0 98.0 8.9
innodb-java-reader 45 100.0 100.0 100.0 15.7 100.0 100.0 100.0 14.9 100.0 | 100.0 | 100.0 9.0
junit-quickcheck 250 99.0 99.0 99.0 80.7 99.0 99.0 99.0 75.1 99.0 99.0 99.0 50.1
mockserver 39 100.0 100.0 100.0 14.0 100.0 100.0 100.0 13.7 100.0 100.0 100.0 8.2
nacos 34 94.0 94.0 94.0 12.1 89.0 94.0 91.0 11.8 89.0 94.0 91.0 6.9
nifi 146 99.0 99.0 99.0 494 100.0 100.0 100.0 45.8 100.0 | 100.0 | 100.0 29.7
openhtmltopdf 35 100.0 100.0 100.0 12.6 100.0 100.0 100.0 11.9 100.0 100.0 100.0 7.2
ormlite-core 114 100.0 100.0 100.0 38.9 100.0 100.0 100.0 35.7 100.0 100.0 100.0 23.0
riptide 30 100.0 100.0 100.0 10.7 100.0 100.0 100.0 10.1 100.0 100.0 100.0 6.1
spring-boot 48 100.0 100.0 100.0 16.9 100.0 100.0 100.0 15.6 100.0 | 100.0 | 100.0 9.7
spring-data-r2dbc 68 100.0 100.0 100.0 23.6 100.0 100.0 100.0 21.8 100.0 100.0 100.0 13.8
spring-hateoas 42 100.0 100.0 100.0 14.9 100.0 100.0 100.0 13.8 100.0 100.0 100.0 8.6
typescript-generator 60 100.0 100.0 100.0 20.9 100.0 100.0 100.0 19.3 100.0 100.0 100.0 12.2
visualee 47 100.0 100.0 100.0 16.6 100.0 | 100.0 100.0 15.3 100.0 100.0 100.0 9.7
wildfly 85 100.0 100.0 100.0 29.3 98.0 99.0 98.0 26.9 98.0 99.0 98.0 17.3

Total/ 431.5

‘ 2105 H 721.0 H

Weighted Avg. 96.3 ‘ 95.6 ‘ 95.1 ‘

662.4 ‘ ‘

95.6 ‘ 96.0 ‘ 95.6 ‘ 95.8 ‘ 96.2 ‘ 95.4 ‘

average precision, recall, and F1-score across all projects, and
the total prediction time across all tests.

Overall, we see that the classifiers in general are effective
at predicting whether a test is flaky, even when predicting on
tests from projects not seen during training. We see that the
differences in prediction is not that much different between us-
ing quantized and non-quantized LLMs, with even a slight in-
crease in recall in using a quantized model, leading to a higher
F1-score of 95.6 for Q-Flakify++. When using FlakyQ_RF, the
final Fl-score is similar to that of Q-Flakify++. These results
suggest that, when training classifiers to predict whether a test
is flaky by using data from other projects, quantization does
not change much the prediction accuracy. However, we once
again see a substantial speedup from using quantized models,
and the prediction time for FlakyQ_RF ends up much faster
than for Flakify++ and Q-Flakify++.

When considering the task of predicting the flaky-test cate-
gory, the results in a per-project evaluation are a bit different.
Table VI is a similar table as before, but shows results for
predicting the category. We see here that the average F1-
score is worse with quantization when comparing Flakify++
to Q-Flakify++, with the score dropping from 92.0 down to
89.7. However, FlakyQ_RF now makes up for that loss in
prediction accuracy, with an average Fl-score of 92.4. Once
again, quantization saves on prediction time, with the total
prediction time being 366.9 seconds for FlakyQ_RF across all
tests, in comparison to 633.8 seconds for Flakify++.

D. RQ4: Evaluating on FlakyCat Dataset

Table VII shows the results of running the different classi-
fiers but trained and evaluated on the FlakyCat dataset. We
show in the table the average Fl-score achieved by each
classifier when categorizing the flaky tests into one of the five
categories defined in the FlakyCat dataset, namely Async wait
(Asyn.), Concurrency (Conc.), Time, Unordered collections
(UC), Test order dependency (OD). The column “Weighted
Avg.”” shows the average Fl-score across all categories. The
final column “PT (sec)” shows the prediction time of the
classifier when run across all tests in this dataset.

Flakify++ achieves high Fl1-scores across all categories,
with an average Fl-score of 95.6, showing how effective
LLMs are at predicting flaky-test categories even for a different
dataset of flaky tests and flaky-test categories. Q-Flakify++’s
Fl-score once again drops due to using a quantized LLM,
down to 93.6. The prediction time for Q-Flakify++ is lower
than for Flakify++, at 11.3 seconds vs 14.0 seconds. We
once again see that the FlakyQ classifiers almost all rectify
the prediction loss. Furthermore, the FlakyQ classifiers have
comparable prediction time as Q-Flakify++.

We also evaluate FlakyCat itself on this same dataset. Flaky-
Cat also uses a pre-trained CodeBERT model, but it relies on
few-shot learning (FSL) for training to do the prediction. We
show the results for FSL in the table as well. The prediction
results for FSL are not as high, similar to the findings in the
original work [15]. We note that the main difference comes



TABLE VI
PER-PROJECT ACCURACY OF FLAKY-TEST CATEGORY (THE PROJECTS THAT HAVE AT LEAST 30 TESTS).

Flakify++ Q-Flakify++ FlakyQ_RF

Project ‘ Support H P | R | F1 | PT (sec) H P | R | F1 | PT (sec) H P | R | Fl | PT (sec)
Chronicle-Wire 59 93.0 85.0 89.0 21.3 92.0 63.0 74.0 20.8 93.0 86.0 90.0 13.5
DataflowTemplates 39 100.0 100.0 100.0 13.8 100.0 90.0 95.0 13.5 100.0 100.0 100.0 7.5
Java-WebSocket 54 88.0 87.0 87.0 19.1 88.0 87.0 87.0 18.2 88.0 87.0 87.0 11.0
Mapper 75 95.0 95.0 93.0 26.2 86.0 75.0 80.0 24.7 99.0 99.0 99.0 15.0
admiral 109 90.0 87.0 85.0 37.8 77.0 80.0 77.0 34.5 91.0 91.0 88.0 22.1
adyen-java-api-library 45 100.0 100.0 100.0 16.1 100.0 100.0 100.0 15.1 100.0 100.0 100.0 8.8
biojava 51 24.0 16.0 19.0 18.2 81.0 10.0 16.0 17.0 28.0 37.0 32.0 10.4
dubbo 170 79.0 77.0 77.0 57.6 81.0 78.0 77.0 50.7 80.0 73.0 73.0 34.8
esper 38 97.0 97.0 97.0 13.6 97.0 97.0 97.0 12.6 95.0 97.0 96.0 7.7
fastjson 64 91.0 92.0 91.0 22.5 89.0 88.0 88.0 20.9 92.0 95.0 94.0 12.8
hadoop 146 91.0 89.0 90.0 49.9 92.0 86.0 88.0 44.0 92.0 90.0 91.0 29.5
hbase 47 98.0 98.0 98.0 16.8 94.0 96.0 95.0 15.6 98.0 98.0 98.0 9.7
hive 41 98.0 98.0 98.0 14.9 98.0 95.0 96.0 13.5 98.0 98.0 98.0 8.6
innodb-java-reader 45 100.0 100.0 100.0 16.1 100.0 100.0 100.0 14.6 100.0 100.0 100.0 9.0
junit-quickcheck 131 97.0 98.0 98.0 44.8 97.0 98.0 98.0 394 97.0 98.0 98.0 26.1
mockserver 30 100.0 100.0 100.0 10.9 100.0 100.0 100.0 10.0 100.0 100.0 100.0 6.2
nacos 32 100.0 100.0 100.0 11.6 97.0 97.0 97.0 10.6 97.0 97.0 97.0 6.6
nifi 139 100.0 100.0 100.0 47.5 100.0 99.0 100.0 42.1 100.0 100.0 100.0 28.2
openhtmltopdf 35 100.0 100.0 100.0 12.6 100.0 100.0 100.0 11.5 100.0 100.0 100.0 7.2
ormlite-core 113 99.0 99.0 99.0 39.1 97.0 97.0 97.0 39.1 97.0 97.0 97.0 23.2
riptide 30 100.0 100.0 100.0 10.9 100.0 100.0 100.0 9.7 100.0 100.0 100.0 6.1
spring-boot 48 100.0 100.0 100.0 17.1 100.0 100.0 100.0 15.0 98.0 98.0 98.0 9.6
spring-data-r2dbc 37 100.0 100.0 100.0 13.4 100.0 100.0 100.0 11.6 100.0 100.0 100.0 7.5
spring-hateoas 41 100.0 100.0 100.0 14.7 100.0 100.0 100.0 12.9 100.0 100.0 100.0 8.3
typescript-generator 60 100.0 100.0 100.0 21.2 100.0 100.0 100.0 18.6 100.0 100.0 100.0 12.1
visualee 47 100.0 100.0 100.0 16.8 100.0 100.0 100.0 14.7 100.0 100.0 100.0 9.1
wildfly 84 98.0 96.0 97.0 29.4 98.0 96.0 97.0 25.3 98.0 98.0 98.0 16.2

Total/ 1810 633.8 576.2 366.9

Weighted Avg. ‘ H 92.9 ‘ 91.9 ‘ 92.0 ‘ H 93.2 ‘ 88.9 ‘ 89.7 ‘ H 93.2 ‘ 92.6 ‘ 92.4 ‘
TABLE VII The dataset we use contains an unbalanced set of tests

PER-CLASSIFIER EVALUATION WITH FLAKYCAT DATASET.

Classifier Asyn. | Conc. | Time ucC OD Weighted PT (sec)
Avg.
Flakify++ 94.80 | 93.31 | 96.86 | 96.08 | 97.09 95.6 14.0
Q-Flakify++ 92.62 | 87.06 | 96.86 | 95.02 | 95.83 93.6 11.3
FlakyQ_KNN | 93.14 | 90.71 | 95.52 | 95.02 | 96.31 94.2 7.8
FlakyQ_MLP | 93.97 | 89.67 | 9552 | 94.82 | 96.60 94.5 7.8
FlakyQ_RF 9428 | 91.54 | 95.52 | 94.82 | 96.60 94.8 7.6
FlakyQ_SVM | 93.76 | 89.04 | 95.52 | 93.16 | 96.12 93.9 7.7
FlakyQ_LR 92.72 | 89.77 | 95.52 | 94.82 | 96.12 93.9 7.5
FSL 72.00 | 36.00 | 75.00 | 72.00 | 73.00 67.5 10.6
FSL++ 93.66 | 90.29 | 97.90 | 95.88 | 96.66 91.5 10.6

from the model not being fine-tuned for the prediction task,
as they directly use the existing pre-trained CodeBERT model.
We enhance their technique to fine-tune the CodeBERT model,
similar to how we do for our own approach, to create a better
classifier; we show the results for this classifier as FSL++. The
Fl1-scores are comparable to the ones achieved by the other
classifiers. These results show the importance of fine-tuning
the model for better prediction results.

VI. THREATS TO VALIDITY

To mitigate bias in results, we use 10-fold cross validation
and a per-project validation that treats each project’s tests as
a fold. For fairer comparison between different classifiers, we
use the same training set and validation set for each fold across
the classifiers.

labeled as flaky and non-flaky, with most tests being labeled
as flaky. It can thus bias the true/false positives and true/false
negatives during prediction. However, given the strong need
for ground truth data for this type of prediction task, we need
to use tests that are labeled correctly as flaky or non-flaky,
i.e., we cannot just assume all tests that are not labeled as
flaky are truly non-flaky. We use the same dataset used in
prior work [14], where the authors manually labeled the dataset
with this ground truth through inspection.

The traditional ML classifiers have many tunable hyper-
parameters, and we use only the recommended defaults for
parameters. The performance of each classifier may actually be
better if they are better tuned. Our overall results showing that
the traditional ML classifiers, when trained using the LLM-
extracted features, still results in predictions quite comparable
to the original LLM-based neural network classifier. Our con-
clusions would still be valid if the traditional ML classifiers’
results are better after tuning their parameters.

For our study, we choose to use CodeBERT as the LLM
for extracting features, as to match prior work in Flakify [14]
that uses CodeBERT. Other LLMs may also be used to parse
test source code and to extract features for the traditional ML
classifier for prediction, and they may lead to different results.
Ultimately, we focus just on the effects of quantization and
rectifying prediction loss using a traditional ML classifier eval-
uated specifically on CodeBERT. Future work can investigate



differences that may occur from using different LLMs.

VII. RELATED WORK

Luo et al. performed the first empirical study on flaky
tests in open-source projects [4]. They categorized flaky tests
by manually inspecting developer-fixed flaky tests. Later re-
searchers would develop techniques to automatically detect
flaky tests, guided by the results from this empirical study [7]-
[11], [48]. For example, Lam et al. developed iDFlakies that
reruns tests in different orders to detect order-dependent flaky
tests [7], and Shi et al. developed NonDex to detect tests
that assume deterministic implementations of nondeterministic
specifications [8]. These researchers collected the results of
their techniques into a public dataset of now known flaky tests,
called IDoFT [6]. This dataset also contains labels for the flaky
tests, categorizing the tests based on the technique that was
used to detect them. We use this dataset for our evaluation.

Many flaky-test detection techniques rely on rerunning tests
or dynamic analysis, meaning they can be costly to run. Prior
work investigated ML techniques to predict whether a test
could be flaky. Alshammari et al. developed the first ML-based
technique for detecting flaky tests, called FlakeFlagger [13].
They first created a large dataset of flaky tests by rerunning
tests 10,000 times, and then they used this dataset to train
and evaluate their ML classifier at predicting whether a test is
flaky. They train their classifier to use static features like as
test smells and lines of code as well as dynamic features like
coverage and test runtime. They find their classifier obtains
an Fl-score of 85% in their evaluation on their dataset.
Fatima et al. later proposed Flakify, which uses LLMs to
similarly predict test flakiness, training the LLM to extract
features from just test code . They find improved performance,
with a reported Fl-score of 98%. Our work is most similar to
Flakify, because we also use the CodeBERT LLM for flaky-
test prediction. Our evaluation shows similar high F1-scores.
We also find that extracting features using CodeBERT greatly
helps traditional ML classifiers at the same task.

Our evaluation on flaky-test categorization is most similar
to prior work by AKkli et al. and their technique FlakyCat. They
obtained a dataset of flaky tests labeled by the reason for flak-
iness [21], based on the definitions provided by Luo et al. [4].
FlakyCat leverages CodeBERT to extract features from test
code, and then it later uses few-shot learning to train a classi-
fier to predict the flaky-test category. They similarly evaluate
using some traditional ML classifiers that use CodeBERT
features for doing the same prediction, finding that FlakyCat
performs better than these traditional ML classifiers. We do
the same evaluation on their dataset of flaky tests, but we find
that these traditional ML classifiers actually predict effectively
when using CodeBERT-extracted features. Akli et al. did not
fine-tune their CodeBERT model whereas we do. Our findings
show the importance of not just using CodeBERT to extract
features but to also fine-tune this model for the specific task.

LLMs are also used for other software engineering tasks.
Lemieux et al. proposed CodaMOSA, which uses LLMs to
improve automatic test generation by providing hints to the

search when traditional search approaches get “stuck’ and can-
not increase coverage any further [49]. Zhang et al. proposed
training a LLM to perform software-edit tasks such as fixing
bugs or updating comments, providing better performance over
LLMs that are trained for code generation [50]. Xia et al. [51]
and Fan et al. [52] both explored using LLMs for automatic
program repair. Lee et al. proposed using LLMs for bug
triaging. Researchers are quickly exploring more ways to
use LLMs, and we investigate expanding its use in flaky-
test detection and categorization tasks while combined with
traditional ML classifiers.

Quantization is a widely used compression technique to
reduce the precision of model parameters and activations to
save memory and computation [16], [38], [39]. Yao et al. [53]
proposed an end-to-end quantization and inference pipeline
that can compress large Transformer-based models with mini-
mal accuracy impact, with up to 5.19x/4.16x speedup on BERT
and GPT-3-style models and a 3x memory footprint reduc-
tion. Xiao et al. [54] proposed a training-free and accuracy-
preserving post-training quantization method for LLMs that
migrate. They integrate SmoothQuant into PyTorch and Faster-
Transformer, achieving up to 1.56x inference acceleration
and halving the memory footprint. In our work, we propose
quantization that converts f1loat data-type model weights to
int8, which we find to improve the model’s runtime and
memory usage, reducing the cost of the LLM.

VIII. CONCLUSIONS

LLMs that predict whether tests are flaky or flaky-test
categories without running them require heavy computational
resources to execute deep neural networks. We propose FlakyQ
to make LLM-based classifiers more efficient via quantiza-
tion. We rectify any prediction loss form using a quantized
model by training a traditional, computationally inexpensive,
ML classifier that learns from features extracted using the
quantized LLM to perform the prediction. Our evaluation
shows that a fine-tuned LLM-based classifier’s prediction
time can be significantly reduced by applying quantization.
Further, the additional traditional ML classifier trained on top
of the quantized LLM masks prediction loss and achieves a
similar F1-scores as the original LLM-based classifier. We find
that LLM-extracted features are key to training an effective
traditional ML classifier for these prediction tasks, as using
features such as bag-of-words or vocabulary-based features
out of test code does not achieve as high Fl1-scores.

In the future, we plan to explore the use of both LLMs
and traditional ML classifiers to explain their predictions, as
explanations may help developers understand and debug their
flaky tests. We also plan on exploring use of additional features
beyond those extractable from test source code. Finally, we
plan on exploring how to combine different classifiers together,
forming a “meta” classifier, to choose which classifier to use
for specific tasks.
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